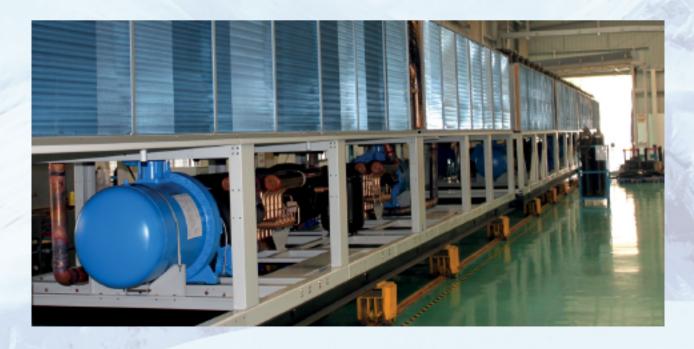


Системы КОНДИЦИОНИРОВАНИЯ

ИСТОРИЯ

Исторически GENERAL VENT – это Российское предприятие по производству вентиляционных установок основанное в 2005 году в Поволжье. В период активного экономического роста в России, благодаря строительному «буму», небольшое предприятие превратилось в современный завод по производству оборудования для вентиляции, кондиционирования и воздушного отопления. Стремительное развитие компании и растущие потребности рынка открыли для популярного

бренда новые возможности и перспективные направления. В 2007 GENERAL VENT значительно расширил линейку выпускаемой продукции и организовал совместные предприятия с известными Европейскими и Азиатскими заводами. В настоящий момент GENERAL VENT предлагает полный спектр промышленного климатического и вентиляционного оборудования, и успешно работает на всей территории Российской Федерации и бывших союзных республик.



ПРОИЗВОДСТВО

Производственные мощности Группы GENERAL VENT расположены в индустриальных зонах Европейских и Азиатских стран. Исторически основное предприятие Группы расположено в свободной экономической зоне в Поволжье и специализируется на производстве центральных кондиционеров и приточных установок. В 2008 было принято решение о создании совместного предприятия Китайским производителем WUXI HAMMER. Предприятие расположено в 150 км от Шанхая в провинции Уси и специализируется на всех производстве типов фанкойлов, компактных чиллеров, тепловых насосов.

В 2010 акционерами были выделены средства и построена собственная лаборатория для проведения исследований и тестирования оборудования. Впоследствии компания ежегодно инвестировала средства усовершенствование продукции документации уровня Европейских ДО требований C целью получения международного сертификата EUROVENT. В оборудование успешно сертификацию. Кроме этого, часть линейки чиллеров и ККБ производится в провинции Удине (Италия) и Гуандун (Китай).

ТЕХНОЛОГИИ

GENERAL VENT климатическое. вентиляционное и холодильное оборудование, сочетающее в себе безупречно высокое качество, современный дизайн и выгодную цену. Эти три основополагающих фактора использования являются результатом современных технологий производства и передовых конструкторских решений. Появление новых технологий обусловлено потребностями растущими рынка высокоэффективном оборудовании, которое соответствует нормам и стандартам в сфере экологии, промышленного производства и энергопотребления. Внедрение передовых технологий является для нас приоритетным и непрерывным процессом, В вовлечены как менеджмент, так и персонал компании. Основными составляющими этого многоуровневого процесса являются:

- постоянный мониторинг достижений станкостроительной индустрии;
- мониторинг достижений в смежных отраслях (производство компрессоров, электродвигателей, вентиляторов, систем управления и др.);
- проведение испытаний новинок в специализированных лабораториях и стендах;
- оптимизация процессов производства и управления;
- обучение персонала;
- и главное инвестиции.

КОНТРОЛЬ КАЧЕСТВА

Система контроля качества GENERAL VENT обеспечивает высокую точность параметров производимого оборудования, надежность комплектующих и долговечность используемых компонентов и материалов. Данная система была внедрена нашими инженерами на этапе создания предприятия и состоит из 3 ступеней:

- входящий контроль всех поступающих элементов от метизов до крупных агрегатов и узлов;
- промежуточный контроль на стадии сборки оборудования;
- финальный контроль, включающий запуск оборудования, мониторинг и фиксацию параметров работы.

Применяемая система обеспечивает высочайшую степень защиты комплектующих от брака, позволяет снизить до минимума количество дефектов при сборке и значительно снижает риск отказа оборудования в процессе эксплуатации.

ГАРАНТИЯ

Система контроля качества наших на предприятиях дает близкую к 100% гарантию безотказной работы оборудования в течение всего срока службы. Стандартный срок гарантии на нашу продукцию составляет от 1 года до 3 лет в зависимости от типа оборудования. Мы полностью уверены в надежности своих агрегатов и поэтому в некоторых случаях готовы предоставлять выборе расширенную гарантию. При фактор производителя данный играет значимую роль и безусловно делает наше предложение наиболее выгодным. Наличие компонентов большинства на складе позволяет нам осуществлять поставку запасных частей в минимальные сроки.

Сервисная поддержка осуществляется при помощи наших партнеров – авторизованных сервисных центров на всей территории России и СНГ.

ПЕРСПЕКТИВЫ

GENERAL VENT настоящее время представляет собой индустриальный холдинг, работающий в сфере производства всех типов оборудования для систем промышленного кондиционирования, вентиляции воздушного отопления. Благодаря энергичной и профессиональной команде нам удалось сконцентрировать значительный интеллектуальный потенциал, который позволяет опережать конкурентов в скорости внедрения инновационных решений

нацеленных на повышение эффективности работы оборудования, удобства его монтажа и эксплуатации. Наличие большого числа комплектующих на складе, автоматизация производственных процессов и эффективная логистика позволяют сократить сроки поставки оборудования до 1-2 недель. Применяемая нами система поддержки партнеров и поощрения проектных организаций делает сотрудничество с нашей компанией еще более привлекательным.

ОБЪЕКТЫ

БЦ «Новатор»

г. Химки, Московской обл.

2016

Холодильные машины с фрикулингом в количестве 2 ед. общей производительностью 600 кВт

г. Ирбит, Свердловской. обл.

2016

Приточные установки в количестве 2 ед. общей производительностью 50000 м3/ч

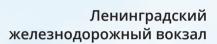
Чикен Хаус

г. Тверь

2015

Приточные установки в количестве 3 ед., общая производительность 12000 м 3/4.

Киевский железнодорожный вокзал


г. Москва

(\)

2014

00

Приточные установки в количестве 49 ед., общая производительность 328000 м3/ч

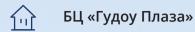
г. Москва

2013 (\)

Приточные установки в количестве 52 ед., общая производительность 170000 м3/ч

Центр гимнастики

г. Казань, Республика Татарстан



2012

Приточные установки в количестве 15 ед., общая производительность 240000 м3/ч

Г. Сухум, респ. Абхазия

2011

Чиллеры в количестве 2 ед., общая производительность 250 кВт. Фанкойлы в количестве 160 шт., общая производительность 1280 кВт

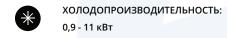
Библиотека КазНТУ

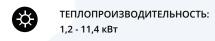
г. Алматы, Республика Казахстан

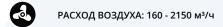
2011

Фанкойлы в количестве 90 ед., общая производительность 700 кВт.

Академия тенниса




2009


Приточные установки в количестве 8 ед., общая производительность 160000 м3/ч

ФАНКОЙЛЫ GDHM2 (3R)

Описание

Канальные фанкойлы серии GDHM горизонтального типа предназначены для зонального регулирования температуры в административных, офисных и жилых помещениях. Вентиляторные доводчики серии GDHM применяются совместно с чиллерами, а также могут подключаться к системе отопления здания для работы в режиме нагрева. Агрегаты GDHM оснащаются центробежными вентиляторами, 3-х скоростными асинхронными электродвигателями, теплообменниками медно-алюминиевыми фильтрами класса EU-2. Доступны как 2-х трубная, так и 4-х трубная версии. Забор и распределение воздуха может осуществляться как фронтально, так и по оси. Конструкция позволяет легко и быстро изменить сторону обслуживания фанкойла и установить дополнительный теплообменник электронагреватель.

ОО Конструкция

Корпус агрегатов изготовлен из оцинкованной стали толщиной 1 мм, несущие элементы конструкции из толщиной 1.5 мм. Теплообменники изготавливаются из медных трубок (диаметр 3/8") с алюминиевым оребрением. Ламели теплообменников имеют гофрированный профиль, обеспечивающий максимально эффективную теплоотдачу. Коллекторы теплообменников изготавливаются из латуни и имеют клапаны для слива воды и спуска воздуха. Дренажный поддон изготовлен из оцинкованной стали толщиной 1 мм и окрашен порошковой краской. Патрубок отвода конденсата расположен со стороны обслуживания. Внешняя часть корпуса поддона оклеена 7 мм слоем пенополиуретана.

Дополнительный теплообменник

Электронагреватель

ЕС-двигатель

Коммутационная плата RS-485

Аксессуары

Термостат GT-107

Клапан с приводом GMV

Термостат GT-2023

Термостат GT-2010

2-х трубный канальный фанкойл с 3-х рядным теплообменником. Свободное давление (S/H) 30/70Па

	GDHM2S/H			200	300	400	500	600	800	1000	1100	1200
	Тип					2-х трубны	й канальный	і с 3-х рядны	ім теплообы	енником		
	Высокая скорость	(H)		340	525	660	870	980	1300	1600	1950	2150
Расход воздуха	Средняя скорость	(M)	м ³ /ч	260	400	560	730	875	1100	1350	1700	1860
	Низкая скорость	(L)		160	300	410	550	700	850	1090	1400	1550
		(H)		1,7	2,67	3,55	4,48	5,34	7	9	10	11
	Полная	(M)		1,35	2,07	3,07	4	4,77	6,2	7,4	8,75	9,4
	холодопроизводительность .	(L)		0,88	1,61	2,35	3,06	4,08	5	5,9	7,5	8,18
		(H)	кВт	1,32	1,94	2,37	3,09	3,53	4,8	6,19	6,93	7,43
	Явная холодопроизводительность	(M)		1,1	1,63	2,13	2,78	3,27	4,34	5,25	6,36	6,75
Мощность	холодопроизводительность .	(L)		0,77	1,41	1,74	2,31	2,84	3,71	4,52	5,67	6,06
		(H)		2,15	2,98	3,9	4,74	5,45	7,63	9,2	10,7	11,38
	Теплопроизводительность	(M)	_	1,76	2,43	3,46	4,03	5,04	6,81	7,85	9,7	10,3
		(L)	кВт	1,21	1,96	2,75	3,38	4,29	5,64	6,73	8,48	9,1
	Электрический нагреват	ель*	-	1	1,5	2	2	2	3	3	3	3
	Тип				L	і Івухсторонн	его всасыва	ния с загнут	ыми вперед	, лопатками		
Вентилятор	Кол-во			1			2				4	
	Тип						3-х скорс	стной асинх	ронный			
	Кол-во		ШТ			1				:	2	
	Электропит	ание					1φ ~ 22	20 В — 50 Гц	/ 60 Гц			
Электродвигатель	Потребляемая мощность при	ı ESP 30∏a	Вт	59,8	78,2	80,5	103,5	115	156,4	209,3	239,2	264,5
	Рабочий ток двигателя при В	ESP 30Πa	A	0,26	0,34	0,35	0,45	0,5	0,68	0,91	1,04	1,15
	Потребляемая мощность при	ı ESP 70Πa	Вт	72	83	101	130	145	230	258	268	300
	Рабочий ток двигателя при В	ESP 70∏a	A	0,31	0,36	0,44	0,57	0,63	1	1,12	1,17	1,3
	Тип / рядно	ОСТЬ				I	медноалюм	і ииниевый / 3	В-х рядный	I		
		(H)		325	450	554	820	907	1117	1236	1632	1767
	Расход воды	(M)	л/ч	279	413	503	749	851	1036	1166	1549	1678
		(L)		194	303	427	622	763	873	1080	1424	1543
Теплообменник		(H)		11,4	21,1	11,8	26,7	33,2	9,12	11,9	21	26,2
	Падение давления	(M)	кПа	8,71	18,2	10	22,8	29,8	8,01	10,8	19,2	23,9
		(L)	-	4,7	10,7	7,55	16,6	24,6	5,97	9,47	16,6	20,7
	Рабочее давление / Испы		МПа					1,6 / 2,5				
Уровень звуко	рвого давления на выходе (H/M/I	L)	дБ(А)	35/34/32	38/36/34	40/38/36	42/40/39	43/41/40	45/44/43	47/46/45	49/48/47	51/49/48
		Вход	11 ()									
Присоедин	ительные размеры	Выход	мм (дюйм)				BH	ıут. 19,05 (3/ ₄	1")			
	Присоединительные размеры выход мм (наг	уж. 19,05 (3/	'4")			
	дренаж д			720	770	920	1070	1120	1620	1620	1770	1920
Габапи	ітные размеры	Ш	мм	0		-220	.570	490				1 .525
Табари	posmeps	В						240				
	Вес нетто	D	КГ	17	19	23	25	26	37	40	42	45
	Вес нетто Вес брутто				15	دے	23	20	۱, ۲	40	+4	4-7

Указанные параметры определены при следующих технических условиях.

Холодопроизводительность: температура воздуха в помещении 27°С (по сухому термометру) / 19,5°С (по мокрому термометру). Температура воды 7°С / 12°С (вход/выход). Теплопроизводительность: температура воздуха в помещении 20°С; температура воды 50°С / 40°С (вход/выход). Параметры тепло/холодопроизводительности определены при равных значениях расхода воды. Звуковая мощность определена испытаниями в шумовой лаборатории при фоновом уровне шума 17 дБ(А). * - ТЭН электронагревателя не входит в стандартную комплектацию.

Дополнительный теплообменник для 4-х трубной версии

	GVHC1R			200	300	400	500	600	800	1000	1100	1200
	Тип / рядно	СТЬ					медноалюм	ииниевый / с	днорядный			
		(H)		1,91	2,71	3,48	4,54	5,04	6,66	8,05	9,61	10,6
	Теплопроизводительность	(M)	кВт	1,57	2,22	3,09	4	4,65	5,9	7,11	8,7	9,57
		(L)		1,09	1,8	2,46	3,25	3,95	4,89	6,09	7,55	8,38
		(H)		164	233	299	390	434	572	692	826	914
Теплообменник	Расход воды	(M)	л/ч	135	191	265	343	399	507	611	748	823
		(L)		94,1	155	211	279	339	420	523	649	721
		(H)		5,62	11,1	20,5	38	48	14,6	22,5	33,7	43,7
	Падение давления	(M)	кПа	3,98	7,83	16,6	30,3	41,3	11,8	18	28,2	36,3
		(L)		2,13	5,4	11,1	20,9	30,9	8,43	13,7	21,9	28,6
	Рабочее давление / Испыт	ания	МПа					1,6 / 2,5				

Указанные параметры определены при следующих технических условиях.

Теплопроизводительность: температура воздуха в помещении 20°C; температура воды 70°C / 60°C (вход/выход).

ФАНКОЙЛЫ GDHM2 (4R)

ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ: 1,5 - 13,5 кВт

ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ: 1,8 - 16,2 кВт

РАСХОД ВОЗДУХА: 193 - 2086 м³/ч

Описание

Канальные фанкойлы серии GDHM горизонтального типа предназначены для зонального регулирования температуры в административных, офисных и жилых помещениях. Вентиляторные доводчики серии GDHM применяются совместно с чиллерами, а также могут подключаться к системе отопления здания для работы в режиме нагрева. Агрегаты GDHM оснащаются центробежными вентиляторами, 3-х скоростными асинхронными электродвигателями, теплообменниками медно-алюминиевыми фильтрами класса EU-2. Доступны как 2-х трубная, так и 4-х трубная версии. Забор и распределение воздуха может осуществляться как фронтально, так и по оси. Конструкция позволяет легко и быстро изменить сторону обслуживания фанкойла и установить дополнительный теплообменник электронагреватель.

Конструкция

Корпус агрегатов изготовлен из оцинкованной стали толщиной 1 мм, несущие элементы конструкции из металла толщиной 1.5 мм. Теплообменники изготавливаются из медных трубок (диаметр 3/8") с алюминиевым оребрением. Ламели теплообменников имеют гофрированный профиль, эффективную обеспечивающий максимально теплоотдачу. Коллекторы теплообменников изготавливаются из латуни и имеют клапаны для слива воды и спуска воздуха. Дренажный поддон изготовлен из оцинкованной стали толщиной 1 мм и окрашен порошковой краской. Патрубок отвода конденсата расположен со стороны обслуживания. Внешняя часть корпуса поддона оклеена 7 мм слоем пенополиуретана.

Дополнительные опции

Дополнительный теплообменник

Электронагреватель

ЕС-двигатель

Коммутационная плата RS-485

Аксессуары

Термостат GT-107

Клапан с приводом GMV

Термостат GT-2023

Термостат GT-2010

2-х трубный канальный фанкойл с 4-х рядным теплообменником. Свободное давление (S/H) 30/70Па

	GDHM2(4R)S/H			200	300	400	500	600	800	1000	1100	1200
	Тип					2-х трубны	ый канальны	ый с 4-х рядн	ым теплооб	менником		
	Высокая скорость	(H)		366	462	701	944	1017	1401	1751	1933	2086
Расход воздуха	Средняя скорость	(M)	м ³ /ч	296	351	634	774	891	1145	1571	1637	1947
	Низкая скорость	(L)		193	302	503	573	749	1016	1426	1447	1787
		(H)		2,43	3,04	4,47	6,02	6,54	8,9	11,16	12,35	13,54
	Полная холодопроизводительность	(M)		2,06	2,46	4,14	5,18	5,91	7,6	10,22	10,88	12,88
	холодопроизводительность	(L)	кВт	1,48	2,18	3,48	4,12	5,19	6,94	9,52	9,9	12,03
	_	(H)	KDI	1,62	2,03	2,99	4,02	4,35	5,95	7,41	8,18	8,95
Mauriaga	Явная холодопроизводительность	(M)		1,36	1,62	2,77	3,43	3,92	5,04	6,76	7,17	8,49
Мощность	холодопроизводительность	(L)		0,96	1,43	2,29	2,69	3,4	4,56	6,25	6,45	7,88
		(H)		2,92	3,65	5,36	7,22	7,85	10,68	13,39	14,82	16,25
	Теплопроизводительность	(M)	D	2,47	2,95	4,97	6,22	7,09	9,12	12,26	13,06	15,46
		(L)	кВт	1,78	2,62	4,18	4,94	6,23	8,33	11,42	11,88	14,44
	Электрический нагрева	тель*		1	1,5	2	2	2	3	3	3	3
5	Тип					Двухстороні	него всасыв	ания с загну	тыми впере	д лопаткам	1	
Вентилятор	Кол-во			1			2				4	
	Тип						3-х скор	остной асин	хронный			
	Кол-во		ШТ			1					2	
	Электропит	ание					1ф ~ 2	20 В — 50 Гц	, / 60 Гц			
Электродвигатель	Потребляемая мощность пр	и ESP 30Па	Вт	59,8	78,2	80,5	103,5	115	156,4	209,3	239,2	264,5
	Рабочий ток двигателя при	ESP 30Πa	А	0,26	0,34	0,35	0,45	0,5	0,68	0,91	1,04	1,15
	Потребляемая мощность пр	и ESP 70Па	Вт	72	83	101	130	145	230	258	268	300
	Рабочий ток двигателя при	ESP 70∏a	А	0,31	0,36	0,44	0,57	0,63	1	1,12	1,17	1,3
	Тип / рядн	ОСТЬ					медноалю	миниевый /	4-х рядный			
		(H)		416	520	766	1032	1121	1526	1913	2118	2321
	Расход воды	(M)	л/ч	354	423	709	888	1014	1303	1752	1865	2208
T 6		(L)		253	374	596	707	890	1190	1632	1697	2062
Теплообменник		(H)		7	11,1	11,5	22,2	27,1	19	32	39,8	52,8
	Падение давления	(M)	кПа	6	9	10,6	19,1	24,5	16,2	29,3	35,1	50,2
		(L)		4,3	8	8,9	15,2	21,5	14,8	27,3	31,9	46,9
	Рабочее давление / Испы	тания	МПа					1,6 / 2,5				
Уровень звук	ового давления на выходе (H/N	/L)	дБ(А)	35/34/32	38/36/34	40/38/36	42/40/39	43/41/40	45/44/43	47/46/45	49/48/47	51/49/4
		Вход										
Присоедин	ительные размеры	Выход	мм (дюйм)				В	нут. 19,05 (3/	4")			
		Дренаж					на	руж. 19,05 (3	3/4")			
		Д		720	770	920	1070	1120	1620	1620	1770	1920
Габари	тные размеры	Ш	MM					490				
		В						240				
	Вес нетто		КГ	18	19	22	25	26	40	40	47	50
	Вес брутто кг					24	27	28	42	42	52	54

Указанные параметры определены при следующих технических условиях.

Холодопроизводительность: температура воздуха в помещении 27°C (по сухому термометру) / 19,5°C (по мокрому термометру). Температура воды 7°C / 12°C (вход/выход). Теплопроизводительность: температура воздуха в помещении 20°C; температура воды 50°C / 40°C (вход/выход). Параметры тепло/холодопроизводительности определены при равных значениях расхода воды. Звуковая мощность определена испытаниями в шумовой лаборатории при фоновом уровне шума 17 дБ(А). * - ТЭН электронагревателя не входит в стандартную комплектацию.

www.generalvent.ru

ФАНКОЙЛЫ GDCM2

ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ: 1,1 - 9,2 кВт

ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ: 1,4 - 11 кВт

РАСХОД ВОЗДУХА: 200 - 2050 м³/ч

Описание

Канальные фанкойлы серии GDCM универсального типа предназначены для зонального регулирования температуры в административных, офисных и жилых помещениях. Вентиляторные доводчики серии GDCM применяются совместно с чиллерами, а также могут подключаться к системе отопления здания для работы в режиме нагрева. Агрегаты GDCM оснащаются центробежными вентиляторами, 3-х скоростными асинхронными электродвигателями, медно-алюминиевыми теплообменниками фильтрами класса EU-2. Доступны как 2-х трубная, так и 4-х трубная версии. Забор и распределение воздуха может осуществляться как фронтально, так и по оси. Конструкция позволяет легко и быстро изменить сторону обслуживания фанкойла и установить дополнительный теплообменник. Агрегаты могут устанавливаться вертикально, таки как горизонтально.

ОО Конструкция

Корпус агрегатов изготовлен из оцинкованной стали толщиной 1 мм, несущие элементы конструкции из толщиной 1.5 мм. Теплообменники изготавливаются из медных трубок (диаметр 3/8") с алюминиевым оребрением. Ламели теплообменников имеют гофрированный профиль, максимально эффективную обеспечивающий теплоотдачу. Коллекторы теплообменников изготавливаются из латуни и имеют клапаны для слива воды и спуска воздуха. Дренажный поддон изготовлен из оцинкованной стали толщиной 1 мм и окрашен порошковой краской. Патрубок отвода конденсата расположен с обеих сторон. Внешняя часть корпуса поддона оклеена 7 мм слоем пенополиуретана.

Дополнительные опции

Дополнительный теплообменник

Электронагреватель

ЕС-двигатель

Коммутационная плата RS-485

Аксессуары

Термостат GT-107

Клапан с приводом GMV

Термостат GT-2023

Смесительный узел GMVC/GMVH

12

2-х трубный универсальный фанкойл. Свободное давление (S/H) 30/70Па

	GDCM2S/H		200	250	300	400	500	600	700	900	1000	
	Тип				2-x	трубный дл	я вертикаль	ного или го	ризонтальн	ого монтажа	3	
	Высокая скорость	(H)		333	504	657	792	1035	1350	1575	1935	2052
Расход воздуха	Средняя скорость	(M)	м ³ /ч	280	432	540	653	873	1170	1440	1710	1890
	Низкая скорость	(L)		198	342	450	563	720	990	1224	1350	1692
		(H)		1,67	2,39	3,05	3,8	4,75	5,96	7,02	8,54	9,25
	Полная холодопроизводительность	(M)		1,46	2,12	2,63	3,27	4,17	5,35	6,56	7,78	8,69
	холодопроизводительность	(L)	кВт	1,11	1,77	2,28	2,92	3,59	4,71	5,79	6,49	7,99
		(H)	KBT	1,21	1,73	2,22	2,75	3,44	4,4	5,15	6,24	6,72
M	Явная холодопроизводительность	(M)		1,05	1,53	1,91	2,35	3	3,93	4,8	5,67	6,3
Мощность	холодопроизводительность	(L)		0,796	1,27	1,65	2,1	2,58	3,45	4,22	4,7	5,78
		(H)		1,98	2,84	3,67	4,51	5,64	7,29	8,5	10,3	11
	Теплопроизводительность	(M)	кВт	1,72	2,51	3,15	4,48	4,93	6,52	7,93	9,34	10,4
		(L)	KBT	1,4	2,3	2,72	3,97	4,23	5,71	6,97	7,74	9,49
	Электрический нагреват	ель*		1	1,5	2	2	2	3	3	3	3
D	Тип				L	Цвухсторонн	его всасыва	ния с загнут	ыми вперед	, лопатками		
Вентилятор	Кол-во			1			2				4	
	Тип						3-х скоро	остной асинх	ронный			
	Кол-во		ШТ			1					2	
	Электропит	ание					1φ ~ 22	20 В — 50 Гц	/ 60 Гц			
Электродвигатель	Потребляемая мощность пр	и ESP 30Па	Вт	59,8	78,2	80,5	103,5	115	156,4	209,3	239,2	264,5
	Рабочий ток двигателя при	ESP 30∏a	А	0,26	0,34	0,35	0,45	0,5	0,68	0,91	1,04	1,15
	Потребляемая мощность пр	и ESP 70Па	Вт	72	83	101	130	145	230	258	268	300
	Рабочий ток двигателя при	ESP 70∏a	А	0,31	0,36	0,44	0,57	0,63	1	1,12	1,17	1,3
	Тип / рядно	СТЬ					медноалю	ииниевый / 3	3-х рядный			
		(H)		286	410	523	651	814	1023	1205	1466	1588
	Расход воды	(M)	л/ч	250	363	451	561	715	918	1126	1335	1491
Теплообменник		(L)		190	303	391	501	615	808	994	1114	1371
Теглоооменник		(H)		9,2	18	10,7	18	27,8	7,9	11,5	17,6	21,8
	Падение давления	(M)	кПа	7,3	14,7	8,4	13,9	22,1	6,6	10,2	15	19,6
		(L)		4,6	10,8	6,6	11,5	17,1	5,3	8,3	10,9	16,9
	Рабочее давление / Испы	тания	МПа					1,6 / 2,5				
Уровень звук	ового давления на выходе (Н/М/	L)	дБ(А)	38/36/34	39/37/35	42/40/38	43/41/39	45/43/41	47/45/43	48/46/44	50/48/46	52/50/-
		Вход					DI	нут. 19,05 (3/4	1"\			
Присоедин	ительные размеры	Выход	мм (дюйм)				БГ	1y 1. 12,02 (2/*	+)			
		Дренаж					нар	руж. 19,05 (3/	(4")			
		Д		608	658	808	958	1008	1358	1508	1658	1808
Габарі	итные размеры	Ш	ММ					230				
	В							460				
	Вес брутто		КГ	22	24	26	30	32	47	47	49	54

Указанные параметры определены при следующих технических условиях.

Холодопроизводительность: температура воздуха в помещении 27°C (по сухому термометру) / 19,5°C (по мокрому термометру). Температура воды 7°C / 12°C (вход/выход). Теплопроизводительность: температура воздуха в помещении 20°C; температура воды 50°C / 40°C (вход/выход). Параметры тепло/холодопроизводительности определены при равных значениях расхода воды. Звуковая мощность определена испытаниями в шумовой лаборатории при фоновом уровне шума 17 дБ(A). * - ТЭН электронагревателя не входит в стандартную комплектацию.

Дополнительный теплообменник для 4-х трубной версии

	GVHC1R			200	300	400	500	600	800	1000	1100	1200
	Тип / рядно	СТЬ					медноалюм	иниевый / о,	днорядный			
		(H)		1,91	2,71	3,48	4,54	5,04	6,66	8,05	9,61	10,6
	Теплопроизводительность	(M)	кВт	1,57	2,22	3,09	4	4,65	5,9	7,11	8,7	9,57
	-	(L)		1,09	1,8	2,46	3,25	3,95	4,89	6,09	7,55	8,38
		(H)		164	233	299	390	434	572	692	826	914
Теплообменник	Расход воды	(M)	л/ч	135	191	265	343	399	507	611	748	823
		(L)		94,1	155	211	279	339	420	523	649	721
		(H)		5,62	11,1	20,5	38	48	14,6	22,5	33,7	43,7
	Падение давления	(M)	кПа	3,98	7,83	16,6	30,3	41,3	11,8	18	28,2	36,3
	-	(L)		2,13	5,4	11,1	20,9	30,9	8,43	13,7	21,9	28,6
	Рабочее давление / Испыт	гания	МПа					1,6 / 2,5				

Указанные параметры определены при следующих технических условиях.

Теплопроизводительность: температура воздуха в помещении 20°C; температура воды 70°C / 60°C (вход/выход).

ФАНКОЙЛЫ GDXM2

ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ: 1,1 - 9,2 кВт

ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ: 1,4 - 11 кВт.

РАСХОД ВОЗДУХА: 200 - 2050 м³/ч

Описание

Фанкойлы серии GDXM универсального типа в декоративном корпусе предназначены ДЛЯ зонального регулирования температуры административных, офисных и жилых помещениях. Вентиляторные доводчики серии применяются совместно с чиллерами, а также могут подключаться к системе отопления здания для работы в режиме нагрева. Агрегаты GDXM оснащаются центробежными вентиляторами, 3-х скоростными асинхронными электродвигателями, медно-алюминиевыми теплообменниками фильтрами класса EU-2. Доступны как 2-х трубная, так и 4-х трубная версии. Забор воздуха может осуществляться как фронтально, так и по оси, а распределение осуществляется и регулируется при помощи автоматических жалюзи. Конструкция позволяет легко и быстро изменить сторону обслуживания фанкойла установить дополнительный теплообменник.

ОО Конструкция

Корпус агрегатов изготовлен из оцинкованной стали толщиной 1 мм, несущие элементы конструкции из металла толщиной 1.5 мм. Теплообменники изготавливаются из медных трубок (диаметр 3/8") с алюминиевым оребрением. Ламели теплообменников имеют гофрированный профиль, обеспечивающий максимально эффективную Коллекторы теплообменников теплоотдачу. изготавливаются из латуни и имеют клапаны для слива воды и спуска воздуха. Дренажный поддон изготовлен из оцинкованной стали толщиной 1 мм и окрашен порошковой краской. Патрубок отвода конденсата расположен с обеих сторон. Внешняя часть корпуса поддона оклеена 7мм слоем пенополиуретана. Декоративный корпус изготовлен из оцинкованной стали и окрашен порошковой краской (RAL 9010). Воздухораспределительные жалюзи и воздухозаборные решетки изготовлены из высококачественного пластика. Цвет корпуса может быть изменен по желанию заказчика в соответствии с палитрой RAL.

Дополнительные опции

Дополнительный теплообменник

Электронагреватель

ЕС-двигатель

Коммутационная плата RS-485

Аксессуары

Термостат GT-107

Клапан с приводом GMV

Термостат GT-2023

Смесительный узел GMVC/GMVH

14

2-х трубный универсальный фанкойл в декоративном корпусе.

	GDXM2			200	250	300	400	500	600	700	900	1000
	Тип			2-x T	рубный в де	екоративном	и корпусе дл	я вертикаль	ного или го	ризонтальн	ого монтаж	а
	Высокая скорость	(H)		333	504	657	792	1035	1350	1575	1935	2052
Расход воздуха	Средняя скорость	(M)	м ³ /ч	280	432	540	653	873	1170	1440	1710	1890
	Низкая скорость	(L)		198	342	450	563	720	990	1224	1350	1692
		(H)		1,67	2,39	3,05	3,8	4,75	5,96	7,02	8,54	9,25
	Полная	(M)		1,46	2,12	2,63	3,27	4,17	5,35	6,56	7,78	8,69
	холодопроизводительность	(L)		1,11	1,77	2,28	2,92	3,59	4,71	5,79	6,49	7,99
		(H)	кВт	1,21	1,73	2,22	2,75	3,44	4,4	5,15	6,24	6,72
	Явная	(M)		1,05	1,53	1,91	2,35	3	3,93	4,8	5,67	6,3
Мощность	холодопроизводительность	(L)		0,796	1,27	1,65	2,1	2,58	3,45	4,22	4,7	5,78
		(H)		1,98	2,84	3,67	4,51	5,64	7,29	8,5	10,3	11
	Теплопроизводительность	(M)		1,72	2,51	3,15	4,48	4,93	6,52	7,93	9,34	10,4
		(L)	кВт	1,4	2,3	2,72	3.97	4.23	5,71	6,97	7,74	9,49
	Электрический нагрева:	гель*		1	1.5	2	2	2	3	3	3	3
	Тип				,-			ния с загнут				
Вентилятор	Кол-во)		1)	Tivin e sairty i	Вини вперед		1	
	Тип							стной асинх	понный			
	Кол-во		ШТ			1					2	
	Электропит	ание	1 2.				1ტ ~ 22	:0 B — 50 Гц	/ 60 Fu			
Электродвигатель	Потребляемая мощность при		Вт	59,8	78,2	80,5	103,5	115	156,4	209,3	239,2	264,5
	Рабочий ток двигателя при		A	0,26	0,34	0,35	0,45	0,5	0,68	0,91	1,04	1,15
	Потребляемая мощность при		Вт	72	83	101	130	145	230	258	268	300
	Рабочий ток двигателя при		A	0.31	0.36	0.44	0,57	0.63	1	1,12	1,17	1,3
	Тип / рядн		,,,	0,51	0,50	0,		иниевый / 3	·	1,12	1,17	1,5
	типт ридп	(H)		286	410	523	651	814	1023	1205	1466	1588
	Расход воды		л/ч	250	363	451	561	715	918	1126	1335	1491
	т асход воды	(M)	704	190	303	391	501	615	808	994	1114	1371
Теплообменник		(L) (H)		9.2	18	10.7	18	27.8	7.9	11,5	17.6	21.8
		(M)	кПа	7,3	14,7	8.4	13.9	22,1	6.6	10,2	15	19.6
	Падение давления		KIId					· ·			-	
	D. 6. (14	(L)		4,6	10,8	6,6	11,5	17,1	5,3	8,3	10,9	16,9
	Рабочее давление / Испь		МПа					1,6 / 2,5				
Уровень звук	ового давления на выходе (Н/М.		дБ(А)	38/36/34	39/37/35	42/40/38	43/41/39	45/43/41	47/45/43	48/46/44	50/48/46	52/50/4
		Вход					ВН	ут. 19,05 (3/4	! ")			
Присоедин	ительные размеры	Выход	мм (дюйм)									
		Дренаж				I		уж. 19,05 (3/ ⊤		I	I	
		Д		858	908	1058	1208	1258	1608	1758	1908	2058
Габарі	итные размеры	Ш	MM					250				
		В				1		494				
	Вес брутто		КГ	24	26	28	32	34	50	50	52	57

Указанные параметры определены при следующих технических условиях.

Холодопроизводительность: температура воздуха в помещении 27°C (по сухому термометру) / 19,5°C (по мокрому термометру). Температура воды 7°C / 12°C (вход/выход). Теплопроизводительность: температура воздуха в помещении 20°C; температура воды 50°C / 40°C (вход/выход). Параметры тепло/холодопроизводительности определены при равных значениях расхода воды. Звуковая мощность определена испытаниями в шумовой лаборатории при фоновом уровне шума 17 дБ(A). * - ТЭН электронагревателя не входит в стандартную комплектацию.

Дополнительный теплообменник для 4-х трубной версии

	GVHC1R			200	300	400	500	600	800	1000	1100	1200
	Тип / рядн	ОСТЬ					медноалюм	иниевый / о	днорядный			
		(H)		1,91	2,71	3,48	4,54	5,04	6,66	8,05	9,61	10,6
	Теплопроизводительность	(M)	кВт	1,57	2,22	3,09	4	4,65	5,9	7,11	8,7	9,57
		(L)		1,09	1,8	2,46	3,25	3,95	4,89	6,09	7,55	8,38
		(H)		164	233	299	390	434	572	692	826	914
Теплообменник	Расход воды	(M)	л/ч	135	191	265	343	399	507	611	748	823
		(L)		94,1	155	211	279	339	420	523	649	721
		(H)		5,62	11,1	20,5	38	48	14,6	22,5	33,7	43,7
	Падение давления	(M)	кПа	3,98	7,83	16,6	30,3	41,3	11,8	18	28,2	36,3
		(L)		2,13	5,4	11,1	20,9	30,9	8,43	13,7	21,9	28,6
	Рабочее давление / Испы	тания	МПа					1,6 / 2,5				

Указанные параметры определены при следующих технических условиях.

Теплопроизводительность: температура воздуха в помещении 20°C; температура воды 70°C / 60°C (вход/выход).

ФАНКОЙЛЫ GDHR2

ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ: 3,7 - 23,7 кВт

ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ: 4,5 - 28 кВт

РАСХОД ВОЗДУХА: 770 - 4250 м³/ч

Описание

Канальные высоконапорные фанкойлы серии GDHR горизонтального типа предназначены регулирования зонального температуры административных, офисных торговых помещениях. Вентиляторные доводчики серии GDHR применяются совместно с чиллерами, а также могут подключаться к системе отопления здания для работы в режиме нагрева. Агрегаты GDHR2 оснащаются центробежными вентиляторами, 3-х скоростными асинхронными электродвигателями, 2-х трубными медно-алюминиевыми теплообменниками и фильтрами класса EU-2. Свободный напор от 35 до Забор и распределение воздуха осуществляется по оси. Также агрегаты могут оснащаться распределительными пленумами с переходом на различные диаметры воздуховодов круглого сечения.

Конструкция

Корпус и несущие элементы конструкции агрегатов изготовлены из оцинкованной стали толщиной толщиной 1.5 мм и окрашены порошковой краской (RAL 9010). Теплообменники изготавливаются из медных трубок (диаметр 3/8") с алюминиевым оребрением. Ламели теплообменников имеют гофрированный профиль, обеспечивающий максимально эффективную теплоотдачу. Коллекторы теплообменников изготавливаются из латуни и имеют клапаны для слива воды и спуска воздуха. Дренажный поддон изготовлен из оцинкованной стали толщиной 1 мм и окрашен порошковой краской. Патрубок отвода конденсата расположен со обслуживания. Агрегаты оснащаются стороны вентиляторами двухстороннего всасывания с загнутыми вперед лопатками. Рабочее колесо вентилятора закреплено на одном валу трехскоростным электродвигателем. Опционально агрегаты могут оснащаться ЕС двигателями.

Дополнительные опции

Дополнительный теплообменник

Электронагреватель

ЕС-двигатель

Коммутационная плата RS-485

Аксессуары

Термостат GT-107

Клапан с приводом GMV

Термостат GT-2023

Термостат GT-2010

16

2-х трубный канальный высоконапорный фанкойл.

	GDHR2			500	800	900	1200	1400	1800	2000	2500
	Тип					2-х трубнь	ій канальныі	і́ высоконапо	рный		
	Высокая скорость	(H)		1020	1500	1900	2150	2880	3180	3500	4250
Расход воздуха	Средняя скорость	(M)	м ³ /ч	920	1360	1700	1950	2680	2880	3100	4050
	Низкая скорость	(L)		770	1200	1450	1700	2270	2400	2600	3700
	Высокая скорость	(H)		60	60	60	60	58	60	62	90
Свободный напор	Средняя скорость	(M)	Па	50	50	50	50	50	50	50	70
	Низкая скорость	(L)		35	35	35	35	35	35	35	50
		(H)		4,56	7,1	8,5	11,6	13,4	17,8	19	23,7
	Полная	(M)		4,22	6,58	7,81	10,7	12,7	16,5	17,2	22,8
	холодопроизводительность	(L)		3,68	5,98	6,92	9,62	11,2	14,2	15	21,2
		(H)	кВт	3,37	5,19	6,25	8,32	9,8	12,7	13,8	17
Мощность	Явная	(M)		3,11	4,8	5,73	7,69	9,26	11,7	12,5	16,4
	холодопроизводительность	(L)		2,7	4,35	5,05	6,87	8,12	10,1	10,8	15,2
		(H)		5,59	8,59	10,4	13,7	16,2	20,9	22,8	28
	Теплопроизводительность	(M)	кВт	5,16	7,94	9,48	12,6	15,3	19,2	20,6	26,9
		(L)		4,48	7,18	8,36	11,3	13,4	16,5	17,8	24,9
	Тип				Двухст	гороннего во	асывания с :	I загнутыми вг	I перед лопатк	ами	
Вентилятор	Кол-в)			117			2			
	Тип					3-x		асинхронный	1		
	Кол-во		ШТ					1			
	Электропит	ание				1	φ~220 B—				
Электродвигатель	Потребляемая мощность	(H)		300	236	346	542	570	625	813	988
	Потребляемая мощность	(M)	Вт	232	202	280	430	450	520	600	860
	Потребляемая мощность	(L)	-	203	182	240	375	395	464	483	780
	Рабочий ток двигате.		A	1,3	1,01	1,51	2,36	2,48	2,72	3,53	4,51
	Тип / рядн			1,5	1,01	-		i / 3-х рядный	· ·	3,33	101
	11117 P.141	(H)		782	1217	1457	1989	2297	3051	3257	4063
	Расход воды	(M)	л/ч	723	1128	1339	1834	2177	2829	2949	3909
	т асход воды	(L)	- 70 4	631	1025	1186	1649	1920	2434	2571	3634
Теплообменник		(H)		13,3	13,8	18,9	43,1	16,7	36,3	12,9	22,3
	Падение давления	(M)	кПа	11,7	12,1	16,3	37,7	15,1	31,7	10,9	20,9
	Паделие давления	(L)	Kild	9,3	10,3	13,2	31,2	12,1	24,6	8,6	18,4
	Рабочее давление / Испы		МПа	3,3	10,5	13,2	1,67		2-4,0	0,0	10,4
V		гапия	дБ(А)	54/52/51	58/56/54	59/57/56	63/62/60	66/65/63	69/67/64	71/68/65	74/73/7
уровень звук	ового давления на выходе (H/M/L)	Pyon	ды(л)	341 321 31	10/ 10/ 34	סכווכופכ	03/02/00	30/03/03	05/07/04	/1/00/03	14/13/1
Pausas	HATORI III IO DOZIMOC'	Вход Выход	мм (дюйм)			наруж. 19	,05 (3/4")			наруж.	25 (1")
присоедин							112010V 10	OF (2/4")			
		Дренаж		740	4440	4440	наруж. 19	_	1.150	1.460	4760
		Д		710	1110	1110	1110	1460	1460	1460	1760
Габар	итные размеры	Ш	MM	630	630	630	630	650	650	750	750
		В		300	300	300	300	380	380	430	430
	Вес брутто		КГ	33	45	46	50	56	60	65	75

Указанные параметры определены при следующих технических условиях.

Холодопроизводительность: температура воздуха в помещении 27°C (по сухому термометру) / 19,5°C (по мокрому термометру). Температура воды 7°C / 12°C (вход/выход). Теплопроизводительность: температура воздуха в помещении 20°C; температура воды 50°C / 40°C (вход/выход). Параметры тепло/холодопроизводительности определены при равных значениях расхода воды. Звуковая мощность определена испытаниями в шумовой лаборатории при фоновом уровне шума 17 дБ(A).

www.generalvent.ru

ФАНКОЙЛЫ GDHR4

ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ: 3,7 - 23,7 кВт

ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ: 3,4 - 17,9 кВт

РАСХОД ВОЗДУХА: 770 - 4250 м³/ч

Описание

Канальные высоконапорные фанкойлы серии GDHR горизонтального типа предназначены регулирования температуры зонального административных, офисных торговых помещениях. Вентиляторные доводчики серии GDHR применяются совместно с чиллерами, а также могут подключаться к системе отопления здания для работы в режиме нагрева. Агрегаты GDHR4 оснащаются центробежными вентиляторами, 3-х скоростными асинхронными электродвигателями, медно-алюминиевыми трубными теплообменниками и фильтрами класса EU-2. Свободный напор от 35 до 100 Па. Забор и распределение воздуха осуществляется по оси. Также агрегаты могут оснащаться распределительными пленумами с переходом на различные диаметры воздуховодов круглого сечения.

Конструкция

Корпус и несущие элементы конструкции агрегатов изготовлены из оцинкованной стали толщиной толщиной 1.5 мм и окрашены порошковой краской (RAL 9010). Теплообменники изготавливаются из медных трубок (диаметр 3/8") с алюминиевым оребрением. Ламели теплообменников имеют гофрированный профиль, обеспечивающий максимально эффективную теплоотдачу. Коллекторы теплообменников изготавливаются из латуни и имеют клапаны для слива воды и спуска воздуха. Дренажный поддон изготовлен из оцинкованной стали толщиной 1 мм и окрашен порошковой краской. Патрубок отвода конденсата расположен со обслуживания. Агрегаты оснащаются стороны вентиляторами двухстороннего всасывания с загнутыми вперед лопатками. Рабочее колесо вентилятора закреплено на одном валу трехскоростным электродвигателем. Опционально агрегаты могут оснащаться ЕС двигателями.

Дополнительные опции

Дополнительный теплообменник

Электронагреватель

ЕС-двигатель

Коммутационная плата RS-485

Аксессуары

Термостат GT-107

Клапан с приводом GMV

Термостат GT-2023

Термостат GT-2010

18

4-х трубный канальный высоконапорный фанкойл.

	GDHR4			500	800	900	1200	1400	1800	2000	2500
	Тип					4-х трубн	ый канальн	ый высокон	напорный		
	Высокая скорость	(H)		1020	1500	1900	2150	2880	3180	3500	4250
Расход воздуха	Средняя скорость	(M)	м ³ /ч	920	1360	1700	1950	2680	2880	3100	4050
	Низкая скорость	(L)		770	1200	1450	1700	2270	2400	2600	3700
	Высокая скорость	(H)		60	60	60	60	58	60	62	90
Свободный напор	Средняя скорость	(M)	Па	50	50	50	50	50	50	50	70
СВОООДПВИТПАПОР	Низкая скорость	(L)	1 1	35	35	35	35	35	35	35	50
	тизкая скороств	(H)		4,56	7,1	8,5	11,6	13,4	17,8	19	23,7
	Полная	(M)	-	4,22	6,58	7,81	10,7	12,7	16,5	17,2	22,8
	холодопроизводительность	(L)	-	3,68	5,98	6,92	9,62	11,2	14,2	15	21,2
		(H)	кВт	3,37	5,19	6,25	8,32	9,8	12,7	13,8	17
Manusage	Явная			3,11	4,8		7,69	9,26	11,7	12,5	16,4
Мощность	холодопроизводительность	(M)	-			5,73					
		(L)		2,7	4,35	5,05	6,87	8,12	10,1	10,8	15,2
	T	(H)		4,1	6,52	7,71	8,42	12,2	13,1	14,5	17,9
	Теплопроизводительность	(M)	кВт	3,82	6,07	7,13	7,86	11,6	12,2	13,3	17,3
	_	(L)		3,36	5,55	6,36	7,13	10,3	10,7	11,7	16,2
Вентилятор	Тип				Двухст	ороннего в			вперед лопа	атками	
	Кол-во)						2			
	Тип					3-x		й асинхронн	ный		
	Кол-во		ШТ					1			
	Электропи	тание				1	φ~220 B—	50 Гц / 60 Г	Ц		
Электродвигатель	Потребляемая мощность	(H)		300	236	346	542	570	625	813	988
	Потребляемая мощность	(M)	Вт	232	202	280	430	450	520	600	860
	Потребляемая мощность	(L)		203	182	240	375	395	464	483	780
	Рабочий ток двигате	еля	A	1,3	1,01	1,51	2,36	2,48	2,72	3,53	4,51
	Тип / рядн	ЮСТЬ				медн	оалюминие	вый / 3-х ря <i>д</i>	цный		
		(H)		782	1217	1457	1989	2297	3051	3257	4063
	Расход воды	(M)	л/ч	723	1128	1339	1834	2177	2829	2949	3909
Теплообменник		(L)		631	1025	1186	1649	1920	2434	2571	3634
охладителя		(H)		13,3	13,8	18,9	43,1	16,7	36,3	12,9	22,3
	Падение давления	(M)	кПа	11,7	12,1	16,3	37,7	15,1	31,7	10,9	20,9
		(L)		9,3	10,3	13,2	31,2	12,1	24,6	8,6	18,4
	Рабочее давление / Исп	ытания	МПа				1,6	/ 2,5			
	Тип / рядн	юсть				медн	оалюминие	вый / 3-х ряд	цный		
		(H)		351	559	661	722	1046	1123	1243	1534
	Расход воды	(M)	л/ч	327	520	611	674	994	1046	1140	1483
Теплообменник		(L)		288	476	545	611	883	917	1003	1389
нагревателя		(H)		4,98	16,5	22,3	26	26,8	30,4	18,7	32
	Падение давления	(M)	кПа	4,39	14,6	19,3	23	24,4	26,8	16	30,1
		(L)		3,51	12,4	15,8	19,3	19,8	21,2	12,8	26,8
	Рабонов даржение / Испи			-				/ 2,5			
	Рабочее давление / Исп	ытания	МПа						69/67/64	71/68/65	74/73/
Уровень звук				54/52/51	58/56/54	59/57/56	03/0//00	66/65/63			
Уровень звук	Рабочее давление / Испі сового давления на выходе (H/N	1/L)	дБ(А)	54/52/51	58/56/54	59/57/56	63/62/60	66/65/63	03/07/04		
	ового давления на выходе (H/N	1/L) Вход	дБ(А)	54/52/51	58/56/54		9,05 (3/4")	66/65/63	03/07/04		25 (1")
		Bход Выход		54/52/51	58/56/54		9,05 (3/4")		03/0/104		25 (1")
	ового давления на выходе (H/N	Вход Выход Дренаж	дБ(А)			наруж. 1	9,05 (3/4") наруж. 1	9,05 (3/4")		наруж	
Присоедин	ового давления на выходе (Н/М	Вход Выход Дренаж Д	дБ(А)	710	1110	наруж. 1 ⁴	9,05 (3/4") наруж. 1 1110	9,05 (3/4") 1460	1460	наруж	1760
Присоедин	ового давления на выходе (H/N	Вход Выход Дренаж	дБ(А)			наруж. 1	9,05 (3/4") наруж. 1	9,05 (3/4")		наруж	1760 750 430

Указанные параметры определены при следующих технических условиях.

Холодопроизводительность: температура воздуха в помещении 27°C (по сухому термометру) / 19,5°C (по мокрому термометру). Температура воды 7°C / 12°C (вход/выход). Теплопроизводительность: температура воздуха в помещении 20°C; температура воды 70°C / 60°C (вход/выход). Звуковая мощность определена испытаниями в шумовой лаборатории при фоновом уровне шума 17 дБ(A).

ФАНКОЙЛЫ GVKD2

Описание

Кассетные фанкойлы серии GVKD предназначены для регулирования температуры зонального административных, офисных и жилых помещениях. Вентиляторные доводчики серии GVKD применяются совместно с чиллерами, а также могут подключаться к системе отопления здания для работы в режиме Агрегаты оснащаются нагрева. GVKD2 радиально-осевыми вентиляторами, скоростными асинхронными электродвигателями, 2-х трубными медно-алюминиевыми теплообменниками и фильтрами класса EU-2. Распределение воздуха осуществляется в 4-х направлениях и регулируется при помощи автоматических жалюзи. Фанкойлы GVKD стандартно поставляются в комплекте с инфракрасными ПДУ, а также могут комплектоваться настенными ПДУ, EC двигателями электронагревателями.

ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ: 1,9 - 11,2 кВт

ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ: 2,3 - 13,4 кВт

РАСХОД ВОЗДУХА: 371 - 2235 м³/ч

Конструкция

Корпус агрегатов изготовлен из оцинкованной стали толщиной 1 мм, несущие элементы конструкции из металла толщиной 1.5 мм. Теплообменники изготавливаются из медных трубок (диаметр 3/8") с оребрением. алюминиевым Ламели теплообменников имеют гофрированный профиль, обеспечивающий максимально эффективную Коллекторы теплообменников теплоотдачу. изготавливаются из латуни и имеют клапаны для слива воды и спуска воздуха. Дренажный поддон ИЗ пластика, оклеен пенополиуретана и оснащен дренажной помпой. Патрубок отвода конденсата расположен со стороны обслуживания. Агрегаты оснащаются центробежными вентиляторами с трехскоростными электродвигателями. Лицевая панель изготовлена из высококачественного пластика. Стандартный цвет RAL 9010. Цвет панелей может быть изменен по желанию заказчика в соответствии с палитрой RAL.

Дополнительные опции

Настенный ПДУ

Электронагреватель

ЕС-двигатель

Коммутационная плата RS-485

Аксессуары

Клапан с приводом GMV

2-х трубный кассетный фанкойл.

	GVKD2			300	400	500	600	700	900	1000	1200
	Тип						2-х трубн	ый кассетны	й		
	Высокая скорость	(H)		553	647	730	1061	1364	1667	1935	2235
Расход воздуха	Средняя скорость	(M)	м³/ч	435	530	618	788	1180	1387	1587	1891
	Низкая скорость	(L)		371	462	535	645	950	1073	1235	1398
	_	(H)		2,66	3,22	3,70	5,40	6,95	8,14	9,61	11,20
	Полная холодопроизводительность	(M)		2,54	2,64	3,20	4,27	6,17	7,52	8,21	9,21
	холодопроизводительность	(L)		1,94	2,44	2,84	3,66	5,15	5,96	6,65	7,46
		(H)	– кВт	1,95	2,29	2,47	3,60	4,47	5,50	6,14	7,00
Marria	Явная холодопроизводительность	(M)		1,56	1,93	2,10	2,80	3,87	4,72	5,26	6,09
Мощность	холодопроизводительность	(L)	1	1,41	1,63	1,83	2,42	3,30	3,83	4,30	4,74
		(H)		3,19	3,86	4,44	6,48	8,34	9,76	11,54	13,44
	Теплопроизводительность	(M)	D.	3,05	3,17	3,84	5,12	7,41	9,02	9,85	11,05
		(L)	кВт	2,33	2,92	3,41	4,40	6,17	7,15	7,99	8,95
	Электрический нагрева	тель*		1,0	2	2,0	3	3,0		4,0	
_	Тип						Цент	робежный			
Вентилятор	Кол-во							1			
	Тип						3-х скоростн	ой асинхрон	ный		
	Кол-во		ШТ					1			
	Электропит	ание					1φ ~ 220 B	— 50 Гц / 60	 Гц		
Электродвигатель	Потребляемая мощность	(H)		54,0	60,0	79,0	83,0	108,0	131,0	169,0	208,0
	Потребляемая мощность	(M)	Вт	42,0	45,0	56,0	58,0	84,0	96,0	128,0	154,0
	Потребляемая мощность	(L)		36,0	38,0	46,0	46,0	63,0	68,0	95,0	113,0
	Рабочий ток двигате	ля	А	0,2	0,3	0,3	0,4	0,5	0,6	0,7	0,9
	Тип / рядн	ОСТЬ				M	едноалюмин	иевый / 3-х р	ядный		
		(H)		456	551	634	926	1192	1395	1648	1920
	Расход воды	(M)	л/ч	436	452	549	731	1058	1289	1407	1579
		(L)	1	333	418	487	628	882	1022	1141	1278
Теплообменник		(H)		20	34	40	29	39	33	37	39
	Падение давления	(M)	кПа	7	21	27	21	26	25	25	33
		(L)		4	17	17	17	17	20	20	20
	Рабочее давление / Испы	тания	МПа				1	,6 / 2,5			
Уровень звук	ового давления на выходе (H/M	/L)	дБ(А)	43/39/31	47/38/32	49/43/32	54/45/42	58/51/42	56/49/47	58/49/47	61/56/4
		Вход									
Присоедин	ительные размеры	Выход	мм (дюйм)				внутр.	19,05 (3/4")			
		Дренаж	1				наруж	. 19,05 (3/4")			
	Д Габаритные размеры Ш В				580		7	05		830	
Габари					580		7	05		830	
					250		2	90		290	
Pas	Размеры лицевой панели				680 x 680 x 2	8	830 x 8	330 x 28		980 x 980 x 28	3
	Вес нетто		КГ	20	20	21	2	26		33	
	Вес брутто				23	24		30		38	

Указанные параметры определены при следующих технических условиях.

Холодопроизводительность: температура воздуха в помещении 27°С (по сухому термометру) / 19,5°С (по мокрому термометру). Температура воды 7°С / 12°С (вход/выход). Теплопроизводительность: температура воздуха в помещении 20°С; температура воды 50°С / 40°С (вход/выход). Параметры тепло/холодопроизводительности определены при равных значениях расхода воды. Звуковая мощность определена испытаниями в шумовой лаборатории при фоновом уровне шума 17 дБ(A).

^{* -} ТЭН электронагревателя не входит в стандартную комплектацию.

ФАНКОЙЛЫ GVKD4

Описание

Кассетные фанкойлы серии GVKD предназначены для регулирования зонального температуры административных, офисных и жилых помещениях. Вентиляторные доводчики серии GVKD применяются совместно с чиллерами, а также могут подключаться к системе отопления здания для работы в режиме нагрева. Агрегаты GVKD4 оснашаются радиально-осевыми вентиляторами, скоростными асинхронными электродвигателями, 4-х трубными медно-алюминиевыми теплообменниками и фильтрами класса EU-2. Распределение воздуха осуществляется в 4-х направлениях и регулируется при помощи автоматических жалюзи. Фанкойлы GVKD стандартно поставляются в комплекте с инфракрасными ПДУ, а также могут комплектоваться ПДУ, EC двигателями настенными электронагревателями.

ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ: 1,8 - 5,6 кВт

ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ: 2 - 9,2 кВт

РАСХОД ВОЗДУХА: 462 - 2235 м³/ч

Конструкция

Корпус агрегатов изготовлен из оцинкованной стали толщиной 1 мм, несущие элементы конструкции из металла толщиной 1.5 мм. Теплообменники изготавливаются из медных трубок (диаметр 3/8") с алюминиевым оребрением. Ламели теплообменников имеют гофрированный профиль, максимально эффективную обеспечивающий теплоотдачу. Коллекторы теплообменников изготавливаются из латуни и имеют клапаны для слива воды и спуска воздуха. Дренажный поддон ИЗ пластика, оклеен пенополиуретана и оснащен дренажной помпой. Патрубок отвода конденсата расположен со стороны обслуживания. Агрегаты оснащаются центробежными вентиляторами с трехскоростными электродвигателями. Лицевая панель изготовлена из высококачественного пластика. Стандартный цвет RAL 9010. Цвет панелей может быть изменен по желанию заказчика в соответствии с палитрой RAL.

Дополнительные опции

Электронагреватель

ЕС-двигатель

Коммутационная плата RS-485

Аксессуары

Клапан с приводом GMV

22

4-х трубный кассетный фанкойл.

	GVKD4			300	400	500	600	700	800	900
	Тип									
	Высокая скорость	(H)		647	730	1061	1364	1667	1935	2235
Расход воздуха	Средняя скорость	(M)	м ³ /ч	530	618	788	1180	1387	1587	1891
	Низкая скорость	(L)		462	535	645	950	1073	1235	1398
		(H)		2,41	2,77	4,05	5,22	6,10	7,21	8,40
	Полная холодопроизводительность	(M)		1,98	2,40	3,20	4,63	5,64	6,16	6,91
	холодопроизводительность	(L)		1,83	2,13	2,75	3,86	4,47	4,99	5,59
		(H)	- кВт	1,72	1,85	2,70	3,35	4,13	4,60	5,25
	Явная холодопроизводительность	(M)		1,45	1,58	2,10	2,90	3,54	3,95	4,57
Мощность	холодопроизводительность	(L)		1,22	1,37	1,82	2,48	2,87	3,23	3,55
		(H)		2,65	3,05	4,46	5,74	6,71	7,93	9,24
	Теплопроизводительность	(M)		2,18	2,64	3,52	5,09	6,20	6,77	7,60
		(L)	кВт	2,01	2,34	3,02	4,24	4,92	5,49	6,15
	Электрический нагревате	Эль*		2	2,0		3,0		4,0	
	Тип						Центробежн	ый		
Вентилятор	Кол-вс)					1			
	Тип					3-х ско	ростной асинх	кронный		
	Кол-во		ШТ				1			
	Электропит	ание				1ф ~	· 220 В — 50 Гц	/ 60 Гц		
Электродвигатель	Потребляемая мощность	(H)		60,0	79,0	83,0	108,0	131,0	169,0	208,0
	Потребляемая мощность	(M)	Вт	45,0	56,0	58,0	84,0	96,0	128,0	154,0
	Потребляемая мощность	(L)		38,0	46,0	46,0	63,0	68,0	95,0	113,0
	Рабочий ток двигател	Я	A	0,3	0,3	0,4	0,5	0,6	0,7	0,9
	Тип / рядн	ОСТЬ				медноал	юминиевый / 3	 3-х рядный		
		(H)		414	475	694	894	1046	1236	1440
	Расход воды	(M)	л/ч	339	411	549	794	967	1055	1184
Теплообменник		(L)		313	365	471	662	766	856	959
охладителя		(H)		34	40	29	39	33	37	39
	Падение давления	(M)	кПа	21	27	21	26	25	25	33
		(L)		17	17	17	17	20	20	20
	Рабочее давление / Испыт		МПа				1,6 / 2,5			
	Тип / рядн	ОСТЬ				медноалк	оминиевый / од	днорядный		
		(H)		227	261	382	492	575	680	792
	Расход воды	(M)	л/ч	187	226	302	437	532	581	651
Теплообменник		(L)	_	172	201	259	364	422	471	527
нагревателя		(H)		28	33	24	32	27	30	32
	Падение давления		кПа							
		(L)		14	14	13	13	17	17	17
	Рабочее давление / Испыт		МПа				1,6 / 2,5			
Уровень звуко	рвого давления на выходе (H/M/L)		дБ(А)	47/38/32	49/43/32	54/45/42	58/51/42	56/49/47	58/49/47	61/56/4
		Вход	11.17							
Присоедині	ительные размеры	Выход	мм (дюйм)				внутр. 19,05 (3	/4")		
	Дренаж						наруж. 19,05 (3	1/4")		
	Д			5	80		705		830	
Габари	тные размеры	Ш			80		705		830	
		В	ММ		50		290		290	
Pa	Размеры лицевой панели				80 x 28		330 x 28		980 x 980 x 28	
	Вес нетто		КГ		23		26		35	

Указанные параметры определены при следующих технических условиях.

Холодопроизводительность: температура воздуха в помещении 27°C (по сухому термометру) / 19,5°C (по мокрому термометру). Температура воды 7°C / 12°C (вход/выход). Теплопроизводительность: температура воздуха в помещении 20°C; температура воды 70°C / 60°C (вход/выход). Звуковая мощность определена испытаниями в шумовой лаборатории при фоновом уровне шума 17 дБ(A). * - ТЭН электронагревателя не входит в стандартную комплектацию.

ФАНКОЙЛЫ GWM

ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ: 0,8 - 6 кВт

ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ: 1,1 - 7,5 кВт

РАСХОД ВОЗДУХА: 220 - 1240 м³/ч

Описание

Настенные фанкойлы серии GWM предназначены для зонального регулирования температуры в административных, офисных и жилых помещениях. Вентиляторные доводчики серии GWM применяются совместно с чиллерами, а также могут подключаться к системе отопления здания для работы в режиме нагрева. Агрегаты **GWM** оснашаются тангенциальными вентиляторами, электродвигателями, медно-алюминиевыми теплообменниками и фильтрами класса EU-2. Доступна только 2-х трубная версия. Распределение воздуха осуществляется и регулируется при помощи автоматических жалюзи. Фанкойлы GWM стандартно поставляются в комплекте со смесительным узлом и инфракрасными ПДУ, а также могут комплектоваться настенными ПДУ.

Конструкция

Корпус агрегатов изготовлен высококачественного пластика и может иметь различный дизайн. Теплообменники изготавливаются из медных трубок (диаметр 3/8") с алюминиевым оребрением. теплообменников имеют гофрированный профиль, обеспечивающий максимально эффективную теплоотдачу. Коллекторы теплообменников изготавливаются из латуни и оснащаются клапанами для слива воды, спуска воздуха и смесительными регулировочными узлами. Дренажный поддон изготовлен из пластика и оклеен слоем пенополиуретана. Стандартный цвет корпуса - белый (RAL 9010). Цвет корпуса может быть изменен по желанию заказчика в соответствии с палитрой RAL.

Дополнительные опции

Настенный ПДУ

Коммутационная плата RS-485

2-х трубный настенный фанкойл со встроенным смесительным узлом

	GWM			150VR	200VR	250VR	300VR	400VR	500VR	550VR	600VR
	Тип						2-х трубн	ый настенныі	й		
	Высокая скорость	(H)		370	500	500	645	788	980	1080	1240
Расход воздуха	Средняя скорость	(M)	м ³ /ч	290	370	370	500	740	760	980	1080
	Низкая скорость	(L)		220	290	290	370	570	600	600	760
		(H)		1,24	2,07	2,40	3,03	3,74	4,81	5,37	5,98
	Полная холодопроизводительность	(M)		1,04	1,64	1,85	2,48	3,28	3,90	4,81	5,16
	холодопроизводительность	(L)		0,84	1,37	1,62	1,87	2,67	3,35	3,35	3,90
		(H)	кВт	0,92	1,52	1,81	2,22	2,74	3,46	3,88	4,34
	Явная	(M)		0,77	1,20	1,34	1,81	2,40	2,80	3,46	3,73
Мощность	холодопроизводительность	(L)		0,62	1,00	1,15	1,35	1,94	2,38	2,38	2,80
		(H)		1,58	2,64	3,14	3,85	4,77	5,97	6,70	7,50
	Теплопроизводительность	(M)		1,32	2,08	2,32	3,14	4,17	4,82	5,97	6,43
		(L)	кВт	1,06	1,72	2,02	2,34	3,37	4,12	4,12	4,82
	Электрический нагрева				1	,0			1	,5	
	Тип						Танге	і нциальный			
Вентилятор	Кол-во)						1			
	Тип				Бе	сколлекторн	ый синхронні	ый (ЕС)			
	Кол-во	шт					1	,			
	Электропит	ание					1d ~ 220 B	— 50 Гц / 60 Г			
Электродвигатель	Потребляемая мощность	(H)		13,0	18,0	13,0	26/26	30,0	30,0	40,0	50,0
	Потребляемая мощность	(M)	Вт	10.0	13,0	10,0	20/20	20,0	20,0	30,0	40.0
	Потребляемая мощность	(L)	-	6,0	10,0	8,0	13/13	13,0	15,0	19,0	25,0
	Рабочий ток двигате	,	A	0.1	0,1	0.1	0.2	0.3	0.3	0.5	0.8
	Тип / рядн		,,,	0,1	0,1			иевый / 3-х ps		0,5	0,0
	, , , , , , , , , , , , , , , , , , ,	(H)		213	355	411	519	641	825	921	1025
	Расход воды	(M)	л/ч	178	281	317	425	562	669	825	885
	т асход воды	(L)	- 70-1	144	235	278	321	458	574	574	669
Теплообменник		(H)		23	29	28	39	50	44	53	63
	Падение давления	(M)	кПа	17	19	17	28	40	31	44	49
	Падение давления		KIIG	12	12	13	16	28	24	24	31
	Рабочее давление / Испь	(L)	N/D-	12	12	13		,6/2,5	24	24	31
Vocasiii asiii	ового давления на выходе (Н/М/	_	МПа	31/26/24	39/31/26	40/33/28	45/34/31	49/44/37	43/39/36	47/43/37	50/47/
у ровень звук	ового давления на выходе (плил		дБ(А)	31/26/24	39/31/26	40/33/28	45/34/31	49/44/37	43/39/36	4//43/3/	50/4//
		Вход					внутр	. 12,20 (1/2")			
Присоедин	нительные размеры	Выход	мм (дюйм)					4.6.0 (5.00)			
		Дренаж				076	наруя	c. 16,0 (5/8")		1060	
		Д				876				1063	
Габарі	итные размеры	Ш	ММ			228				240	
		В				300				310	1
	Вес брутто		КГ	11	12	13	13	14	16	16	16

Указанные параметры определены при следующих технических условиях.

Холодопроизводительность: температура воздуха в помещении 27°С (по сухому термометру) / 19,5°С (по мокрому термометру). Температура воды 7°С / 12°С (вход/выход). Теплопроизводительность: температура воздуха в помещении 20°С; температура воды 50°С / 40°С (вход/выход). Параметры тепло/холодопроизводительности определены при равных значениях расхода воды. Звуковая мощность определена испытаниями в шумовой лаборатории при фоновом уровне шума 17 дБ(A).

* - ТЭН электронагревателя не входит в стандартную комплектацию.

АКСЕССУАРЫ ДЛЯ ФАНКОЙЛОВ

Описание

Универсальные термостаты серии GT предназначены для регулирования температуры в помещениях и используются со всеми типами канальных фанкойлов. Регулирование происходит посредством открытия/закрытия смесительного клапана и управления скоростью вентилятора фанкойла. Принцип работы:

- Версия DA - при достижении заданной температуры в помещении клапан закрывается, а вентилятор продолжает работать; - Версия DB - при достижении заданной температуры в помещении клапан закрывается, вентилятор останавливается.

Условные обозначения:

GT - GENERAL VENT THERMOSTAT

107 — Наименование модели

DA — Исполнение: DA/DB/D4

Т — Часы и таймер

– Инфракрасный приемник для пульта ДУ

— Подсветка экрана

Электронный термостат GT107DA для 2-х трубных фанкойлов GT107D4 для 4-х трубных фанкойлов

TOUCH SCREEN термостат GT2025DA/DB для 2-х трубных фанкойлов GT2025D4 для 4-х трубных фанкойлов.

Электронный термостат GT108DA для 2-х трубных фанкойлов GT108D4 для 4-х трубных фанкойлов

Электронный термостат GT2010DA/DB для 2-х трубных фанкойлов GT2010D4 для 4-х трубных фанкойлов.

Электронный термостат GT2023DA/DB для 2-х трубных фанкойлов GT2023D4 для 4-х трубных фанкойлов.

Инфракрасный пульт ДУ GT-IRC02 для термостатов GT108, GT2023, GT2025, GT2010, GT2016

Электронный термостат GT2016DA/DB для 2-х трубных фанкойлов GT2016D4 для 4-х трубных фанкойлов.

Проводной пульт ДУ для кассетных и настенных фанкойлов GENERAL VENT

Универсальные смесительные 2-х и 3-х ходовые клапаны серии GMV с сервоприводом. Клапаны GMV типа «открыт/закрыт» предназначены для регулирования подачи теплоносителя и подходят для работы со всеми типами фанкойлов. Электроприводы клапанов оснащаются 2-х жильным подключением электропитания и могут использоваться с большинством пультов управления и электронных термостатов.

Модель	Тип	Размер	условный расход, [kV]	Время открытия	Рабочее давление [МПа]	Эл. питание		
GMV-2215	2-х ходовой	1/2"	1,5					
GMV-2315	3-х ходовой	1/2"	1,5					
GMV-2220	2-х ходовой	3/4"	2,5	10	1,6	1φ ~ 230B±10% 50/60HZ		
GMV-2320	3-х ходовой	3/4"	2,5					
GMV-2225	2-х ходовой	1"	4,8					
GMV-2325	3-х ходовой	1"	4,8					

26

ГИДРОМОДУЛИ

GVPS гидромодули без бака-аккумулятора

GVPT гидромодули с баком-аккумулятором

Описание

Гидромодули серии GVP предназначены ДЛЯ регулирования расхода охлаждаемой и/или охлаждающей жидкости (вода или водяные растворы гликоля) В системах центрального кондиционирования и системах охлаждения. Насосные станции GVP применяются совместно с чиллерами, фанкойлами, драйкулерами градирнями, а также могут применяться в системах отопления и иных гидравлических системах. Агрегаты серии GVP оснащаются циркуляционными насосами различной производительности подбираются в соответствии с требуемым расходом теплоносителя и сопротивлением сети. В отличии от модели GVPT оснащаются GVPS, дополнительной аккумулирующей емкостью.

Конструкция

GVP представляют собой Гидромодули оборудованную и готовую к эксплуатации насосную станцию. В состав агрегата входят 1 или 2 циркуляционных насоса, расширительный бак, запорная арматура, защитный корпус и комплект автоматики. Модели GVPS поставляются без бак-аккумулятора, модели GVPT комплектуются баком-аккумулятором объемом от 500 до 2500 л. Защитный корпус гидромодулей выполнен из алюминиевого каркаса и панелей из нержавеющей стали, которые надежно защищают внутренние элементы агрегатов от атмосферных осадков и делают возможным их эксплуатацию как внутри, так и снаружи зданий.

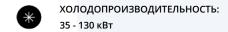
Дополнительные опции и аксессуары

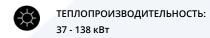
Резиновые виброопоры

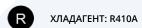
Частотный регулятор

Переходник муфта-фланец

Таймер для насосов




Защита замерзания


7

МОДУЛЬНЫЕ ЧИЛЛЕРЫ GV-SS35÷130/RN1L

Технические характеристики

GV-SS35÷130/RN1L			35	65	80	135
				N	им	
Охлаждение	Холодопроизводительность (1)	кВт	35	65,0	80,0	130,0
	Потребляемая мощность (1)	кВт	11,5	20,4	25,8	42,3
	Теплопроизводительность (2)	кВт	37,0	69,0	85,0	138,0
Нагрев	Потребляемая мощность (2)	кВт	11,3	20,5	26,5	43,0
,	Количество	n°	1	1	2	2
Компрессоры	Тип			Спирал	тьный	
	Расход воды	м³/ч	6,0	11,2	13,8	22
Испаритель	Падение давления	кПа	55	30	30	40
	Подсоединения по воде	ММ	40	65	65	65
V	Вентиляторы	n°	1	2	2	2
Конденсатор	Расход воздуха	M ³ /C	3,75	7,50	13,89	13,89
	Электропитание	В/Ф/Ч		380	3/50	
Электрические характеристики	Макс. рабочий ток	Α	27	54,5	65	109
AGENT CONCINION	Пусковой ток	Α	177	260	197	260
Звуковое давление	Стандартный агрегат (3)	дБ	65	67	67 67	
	Транспортный вес (4)	КГ	320	530	645	935
Bec	Рабочий вес (4)	КГ	330	590	710	1005

⁽¹⁾ Холодная вода 12/7°C, наружная температура воздуха 35°C.

⁽²⁾ Горячая вода $40/45^{\circ}$ С, наружная температура воздуха 7° С по сухому термометру / 6° С по мокрому термометру

Элементы защиты

- Реле высокого давления;
- Реле низкого давления;
- Фазовый монитор;
- Защита от высокой температуры конденсации;
- Защита от высокой температуры нагнетания;
- Четырехступенчатая защита от заморозки испарителя;
- Защита по температуре «прямой» и «обратной» воды

МОДУЛЬНЫЕ ЧИЛЛЕРЫ GV-SS35÷130/RN1L

Описание

Воздухоохлаждаемые чиллеры и тепловые насосы серии GV-SS35÷130/RN1L предназначены для охлаждения воды или гликолевых растворов в средних и больших системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры серии GV-SS35÷130/RN1L имеют модульную конструкцию и применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок. Холодильные машины серии GV-SS35÷130/RN1L оснащаются спиральными компрессорами и кожухотрубными

испарителями. Агрегаты GV-SS35÷130/RN1L могут комплектоваться циркуляционным насосом, интерфейсной платой RS485 для интеграции в систему диспетчеризации. Модельный ряд представлен 4-мя базовыми моделями: 35; 65, 80 и 130 кВт, которые могут быть объединены в систему до 16 агрегатов и управляться одним контроллером по принципу Master-Slave. Диапазон уличных температур для режима охлаждения: -10~+46°C, для режиме обогрева: -15 ~ +24°C. Диапазон температуры охлаждаемой жидкости: 0-17°C.

Конструкция

- Самонесущая конструкция из оцинкованной стали, окрашенная полиэфирной порошковой краской.
- Спиральные компрессоры со встроенным маслоотделителем, нагревателем картера (при необходимости), смотровым стеклом и защитой от перегрева.
- Хладагент R410A.
- Электронный ТРВ.

- Осевые вентиляторы с непосредственным приводом от электродвигателя.
- Конденсатор изготовлен из медных труб с алюминиевым оребрением.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров вентиляторов.
- Испаритель кожухотрубный теплообменник

Дополнительные опции

Циркуляционный насос;

Интерфейсная плата RS485. Протоколы MODbus, BACnet, LonWorks;

Программа управления с персонального компьютера.

Дополнительные аксессуары:

MHS Резиновые виброопоры **MHD** Пружинные виброопоры

WFS Реле протока

YBZ Манометры

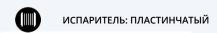
Запорные клапаны

Габаритные размеры

			35	65	80	135
	Длина	мм	1770	1770	1770	1770
Размеры	Высота	ММ	1020	1020	1020	1020
	Ширина	ММ	980	980	980	980

www.generalvent.ru

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVSA 4÷20



Технические характеристики

18,6	20	
18,6		
18,6		
	20,5	
6,0	6,6	
21,9	24,4	
7,1	8,0	
1	1	
2	2	
178	164	
400 / 3+N / 50		
13	15	
62	78	
8,9	9,8	
3,0	3,0	
90	80	
50	50	
34	34	
1"	1"	
52	52	
196	198	
246	248	
	21,9 7,1 1 2 178 / 3+N / 50 13 62 8,9 3,0 90 50 34 1" 52 196	

⁽¹⁾ Холодная вода 12/7°С, температура конденсации 50°С.

⁽²⁾ Горячая вода 40/45°C, температура испарения 0°C.

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

⁽⁴⁾ Агрегат без бака и насоса.

^(*) Сторона D: сторона эл. щита

⁽N.B.) Вес версий WP указан в технической документации.

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVSA 4÷20

Описание

Воздухоохлаждаемые чиллеры и тепловые насосы серии GVSA 4÷20 предназначены для охлаждения воды или гликолевых растворов в бытовых и коммерческих системах центрального Чиллеры **GVSA** кондиционирования. применяются в сочетании с фанкойлами или с водяного охлаждения приточных установок. Холодильные машины серии GVSA 4÷20 оснащаются спиральными компрессорами пластинчатыми испарителями, имеют фреоновый и

гидравлический контур. Агрегаты GVSA 4÷20 стандартно комплектуются накопительным баком и насосом, имеют компактные размеры и обладают низким уровнем шума. Также агрегаты имеют оптимизированный холодильный контур и компактный размер конденсатора, что существенно снижает необходимое количество хладагента и делает агрегаты безопасными для окружающей среды.

Конструкция

- Агрегат с несущей рамой из сплава Peraluman на резиновых амортизаторах, панели изготовлены из оцинкованных стальных листов.
- Спиральные компрессоры с защитой от перегрева и нагревателем картера (при необходимости).
- Осевые вентиляторы с низким расходом воздуха и особым профилем лопатки с непосредственным приводом от электродвигателя.
- Конденсатор изготовлен из медных труб с алюминиевым оребрением, для версии с тепловым насосом (WP) комплектуется поддоном для сбора конденсата.
- Испаритель паяный пластинчатый теплообменник из нержавеющей стали марки AISI 316 встроенный в накопительный бак.

- Хладагент R410A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров вентиляторов.
- Микропроцессорная система контроля и регулирования.
- Водяной контур включает в себя: дифференциальный датчик давления, аккумулирующий бак, циркуляционный насос, предохранительный клапан, и манометр.
 Расширительный бак интегрирован в бак-аккумулятор.

Дополнительные опции

BT - Низкотемпературный комплект

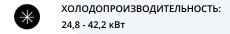
Дополнительные аксессуары:

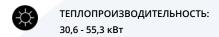
РВ - Прессостат низкого давления

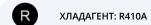
CR - Дистанционный автоматический пульт управления

IS - Интерфейсная плата RS 485

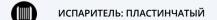
RP - Металлическая защитная решетка конденсатора


Габаритные размеры


			4	5	7	8	9	11	14	16	18	20
Длина	STD	ММ	870	870	870	870	870	870	1160	1160	1160	1160
Высота	STD	ММ	320	320	320	320	320	320	500	500	500	500
Ширина	STD	MM	1100	1100	1100	1100	1100	1100	1270	1270	1270	1270


www.generalvent.ru

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVSA 25÷45



Технические характеристики

GVSA 25÷45			24	27	34	40				
		ММ								
Охлаждение	Холодопроизводительность (1)	кВт	24,8	28,6	33,4	33,4				
Эхлаждение	Потребляемая мощность (1)	кВт	8,3	10,7	11,7	11,7				
Нагрев	Холодопроизводительность (2)	кВт	30,6	36,7	41,6	41,6				
нагрев	Потребляемая мощность (2)	кВт	9,7	11,8	12,8	12,8				
Компрессоры	Количество	n°	1	1	1	1				
компрессоры	Тип			Спира	льный					
	Расход воды	л/с	1,2	1,3	1,6	2,0				
И спаритель	Падение давления	кПа	39	51	37	39				
	Подсоединения по воде	дюйм	1"	1"	1"	1"				
/au.sau.ca=an	Вентиляторы	n°	1	2	2	2				
Конденсатор	Расход воздуха	M ³ /C	2,13	4,40	4,40	4,40				
	Электропитание	В/Ф/Ч		400 / 3	+N / 50					
Электрические характеристики	Макс. рабочий ток	А	23	26	29	44				
марактертите	Пусковой ток	А	113	122	123	177				
	Ном. мощность насоса	кВт	0,55	0,55	0,55	0,75				
	Напор насоса	кПа	212	169	178	161				
Версия с баком и насосом	Объем накопительного бака	I	300	300	300	300				
	Расширительный бак	I	8	8	8	8				
	Подсоединения по воде	дюйм	1"	1"	1"	1"				
Ввук. давление	Стандартный агрегат (3)	дБ	51	52	52	52				
2	Транспортный вес (4)	КГ	220	235	265	279				
Bec	Рабочий вес (4)	КГ	223	238	268	282				

⁽¹⁾ Холодная вода 12/7°C, температура конденсации 50°C.

⁽²⁾ Горячая вода 40/45°C, температура испарения 0°C.

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

⁽⁴⁾ Агрегат без бака и насоса.

^(*) Сторона D: сторона эл. щита

⁽N.B.) Вес версий WP указан в технической документации.

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVSA 25÷45

Описание

Воздухоохлаждаемые чиллеры и тепловые насосы серии GVSA 25÷45 предназначены для охлаждения воды или гликолевых растворов в малых и средних системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры серии GVSA 25÷45 применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок. Холодильные машины GVSA

25÷45 оснащаются роторными или спиральными компрессорами, пластинчатыми испарителями и имеют фреоновый и гидравлический контур. Агрегаты GVSA 25÷45 могут комплектоваться накопительным баком, насосом, баком и насосом, а также интерфейсной платой RS485 для интеграции в систему диспетчеризации.

Конструкция

 Агрегат с несущей рамой из сплава Peraluman, панели изготовлены из оцинкованных стальных листов.

Роторные или спиральные компрессоры с защитой от перегрева и нагревателем картера (при необходимости).

- Осевые вентиляторы с низким расходом воздуха и особым профилем лопатки с непосредственным приводом от электродвигателя.
- Испаритель паяный пластинчатый теплообменник из нержавеющей стали марки AISI 316 с дифференциальным реле, установленным на теплообменнике, и электронагревателем для защиты его от размораживания для версий WP.

- Конденсатор изготовлен из медных труб с алюминиевым оребрением.
- Хладагент R410A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров и вентиляторов.
- Микропроцессорная система контроля и регулирования.
- Водяной контур для версии SP включает: аккумулирующий бак, насос, предохранительный клапан, манометр и расширительный бак.

Дополнительные опции

ВТ - Низкотемпературный набор

Дополнительные аксессуары:

СС - Управление вентиляторами по давлению конденсации до -20°C наружного воздуха

PS - Циркуляционный насос

CR - Дистанционный автоматический пульт управления

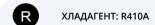
IS - Интерфейсная плата RS 485

RP - Металлическая защитная решетка конденсатора

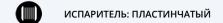
AG - Резиновые виброопоры

Габаритные размеры

		24	27	34	40
Длина	ММ	1850	1850	1850	1850
Высота	ММ	1000	1000	1000	1000
Ширина	ММ	1300	1300	1300	1300


www.generalvent.ru

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVSA 50÷180



Технические характеристики

GVSA 50÷180			50	55	65	75	85	95	110	130	150	180
							ММ					
0	Холодопроизводительность (1)	кВт	47,6	54,9	63,5	72,9	83,4	95,9	110,0	127,0	147,0	178,0
Охлаждение	Потребляемая мощность (1)	кВт	16,1	18,8	21,8	25,0	28,3	31,6	37,9	43,3	50,1	58,2
Harnes	Холодопроизводительность (2)	кВт	54,1	61,8	71,4	80,3	90,4	106,0	120,0	135,0	154,0	187,0
Нагрев	Потребляемая мощность (2)	кВт	17,3	19,6	23,1	25,4	28,8	33,4	38,5	43,8	50,5	60,4
	Количество	n°	2	2	2	2	2	3	3	3	4	4
Компрессоры	Фреоновые контуры	n°	1	1	1	1	1	1	1	1	2	2
	Кол-во ступеней произв-сти	n°			2				3		4	
	Расход воды	л/с	22,7	26,2	30,3	34,8	39,8	45,8	52,7	60,6	70,4	84,9
Испаритель	Падение давления	кПа	45	48	43	48	43	58	46	53	48	48
	Подсоединения по воде	дюйм	1½"	1½"	11/2"	1½"	1½"	2½"	2½"	2½"	2½"	2½"
	Электропитание	В/Ф/Ч					400/3/	50				
Электрические характеристики	Макс. рабочий ток	А	40	43	52	56	65	75	85	103	111	133
ларактеристики	Пусковой ток	А	163	165	175	188	232	199	218	265	243	300
Версия STD	Звуковое давление (3)	дБ	56	56	60	60	60	60	61	61	61	61
с функцией SL	Звуковое давление с опцией SL (3)	дБ	54	54	58	58	58	58	59	59	59	59
	Звуковое давление (3)	дБ	52	52	56	56	56	55	55	55	56	
Версия SSL	Напор насоса	кПа	120	110	110	110	140	150	140	120	110	100
Агрегат с баком и насосом	Расширительный бак	л	12	12	12	12	12	12	12	12	18	18
	Подсоединения по воде	дюйм	2½"	2½"	2½"	2½"	2½"	2½"	2½"	2½"	2½"	2½"
	Транспортный вес (4)	КГ	595	624	663	682	791	878	927	1036	1135	1374
Bec	Рабочий вес (4)	КГ	600	630	670	690	800	890	940	1050	1150	1390

⁽¹⁾ Холодная вода 12/7°С, наружная температура воздуха 35°С.

⁽²⁾ Горячая вода 40/45°С,наружная температура воздуха 7°С по сухому термометру / 6°С по мокрому термометру

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

⁽⁴⁾ Агрегат без бака и насоса.

^(*) Сторона С: сторона эл. щита

⁽N.B.) Вес версий SSL и WP указан в технической документации.

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVSA 50÷180

Описание

Воздухоохлаждаемые чиллеры и тепловые насосы серии GVSA 50÷180 предназначены для охлаждения воды или гликолевых растворов в средних и больших системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры серии GVSA 50÷180 применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок. Холодильные машины серии

GVSA 50÷180 оснащаются спиральными компрессорами и пластинчатыми испарителями. Агрегаты GVSA 50÷180 могут комплектоваться накопительным баком, насосом, баком и насосом, а также интерфейсной платой RS485 для интеграции в систему диспетчеризации. Агрегаты поставляются с установленными на заводе опциями и дополнительными аксессуарами.

Конструкция

- Самонесущая конструкция из оцинкованной стали, окрашенная полиэфирной порошковой краской.
- Спиральные компрессоры со встроенным маслоотделителем, нагревателем картера (при необходимости), смотровым стеклом, защитой от перегрева и запорными клапанами.
- Осевые вентиляторы с непосредственным приводом от электродвигателя.
- Конденсатор изготовлен из медных труб с алюминиевым оребрением.
- Испаритель паяный пластинчатый теплообменник из нержавеющей стали AISI 316 с одним контуром на стороне хладагента и одним на

стороне воды в моделях 50÷130; с двумя независимыми контурами на стороне хладагента и одним контуром на стороне воды в моделях 150÷180. В агрегатах, работающих в режиме теплового насоса, всегда устанавливается электронагреватель для защиты теплообменника от размораживания.

- Хладагент R410A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров и вентиляторов.
- Микропроцессорная система контроля и регулирования.

Дополнительные опции

IM - Автоматы защиты

SL - Шумоизоляция компрессора

СТ - Управление вентиляторами по давлению конденсации до 0 °C наружного воздуха

СС -Управление вентиляторами по давлению конденсации до -20°C наружного воздуха

ВТ - Низкотемпературный набор

DS - Пароохладитель

RT - Последовательная полная рекуперация тепла

SI - Инерционный бак

PS - Циркуляционный насос

PD - Два циркуляционных насоса

Дополнительные аксессуары:

MN - Манометры высокого и низкого давлений

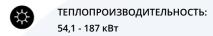
CR - Дистанционный автоматический пульт управления

IS - Интерфейсная плата RS 485

RP - Металлическая защитная решетка конденсатора

AG - Резиновые виброопоры


Габаритные размеры


			50	55	65	75	85	95	110	130	150	180
	STD	ММ	2350	2350	2350	2350	2350	2350	2350	2350	2350	2350
Длина	SSL	мм	2350	2350	2350	2350	2350	2350	2350	2350	2350	
	WP/SSL	ММ	2350	2350	2350	2350	2350	2350	2350	2350	2350	
Высота	STD	MM	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Ширина	STD	MM	1920	1920	1920	1920	1920	1920	1920	1920	1920	1920

www.generalvent.ru

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVCA 50÷180

R ХЛАДАГЕНТ: R410A

КОМПРЕССОР: СПИРАЛЬНЫЙ

испаритель: пластинчатый

GVCA 50÷180			50	55	65	75	85	95	110	130	150	180
							MM					
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Холодопроизводительность (1)	кВт	47,6	54,9	63,5	72,9	83,4	95,9	110,0	127,0	147,0	178,0
Охлаждение	Потребляемая мощность (1)	кВт	17,0	20,4	24,2	27,4	30,6	33,8	41,9	47,3	55,0	64,4
Нагрев	Холодопроизводительность (2)	кВт	54,1	61,8	71,4	80,3	90,4	106,0	120,0	135,0	154,0	187,0
пагрев	Потребляемая мощность (2)	кВт	18,2	21,3	25,5	27,8	31,2	35,8	42,5	47,8	55,5	66,8
	Количество	n°	2	2	2	2	2	3	3	3	4	4
Компрессоры	Фреоновые контуры	n°	1	1	1	1	1	1	1	1	2	2
	Кол-во ступеней произв-сти	n°			2				3			4
	Расход воды	л/с	22,7	26,2	30,3	34,8	39,8	45,8	52,7	60,6	70,4	84,9
Испаритель	Падение давления	кПа	45	48	43	48	43	50	46	53	48	48
	Подсоединения по воде	дюйм	1½"	11/2"	11/2"	11/2"	1½"	2½"	2½"	2½"	2½"	2½"
	Электропитание	В/Ф/Ч					400 / 3 / 5	D				
Электрические характеристики	Макс. рабочий ток	Α	43	48	57	61	70	80	94	107	122	146
	Пусковой ток	А	166	169	180	193	237	204	227	275	255	313
Danasa CTD	Стат. давление	Pa	165	147	120	120	105	115	135	135	190	105
Версия STD с функцией SL	Звуковое давление (3)	дБ	65	65	66	66	66	67	67	67	67	67
- +5	Звуковое давление с опцией SL(3)	дБ	62	62	63	63	63	64	64	64	64	64
	Стат. давление	Pa	298	288	263	263	245	256			400	
Версия повыш. напора	Звуковое давление (3)	дБ	66	66	67	67	67	68			68	
напора	Звуковое давление с опцией SL(3)	дБ	63	63	64	64	64	65			65	
	Напор насоса	кПа	120	110	110	110	140	150	140	120	130	100
Агрегат с баком	Объем накопительного бака	л	400	400	400	400	400	400	400	400	600	600
и насосом	Расширительный бак	л	12	12	12	12	12	12	12	12	18	18
	Подсоединения по воде	дюйм	2½"	21/2"	2½"	2½"	2½"	2½"	2½"	2½"	2½"	2½"
D	Транспортный вес (4)	КГ	665	674	738	757	781	938	991	1011	1240	1354
Bec	Рабочий вес(4)	КГ	670	680	745	765	790	950	1005	1025	1255	1370

⁽¹⁾ Холодная вода 12/7°С, наружная температура воздуха 35°С.

⁽²⁾ Горячая вода 40/45°С,наружная температура воздуха 7°С по сухому термометру / 6°С по мокрому термометру

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

⁽⁴⁾ Агрегат без бака и насоса.

^(*) Высота с баком

^(**) Сторона А: сторона эл. щита

⁽N.B.) Вес версий WP указан в технической документации.

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVCA 50÷180

Описание

Воздухоохлаждаемые чиллеры и тепловые насосы серии GVCA 50÷180 предназначены для охлаждения воды или гликолевых растворов в средних и больших системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры серии GVCA 50÷180 применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок. Холодильные машины серии

GVCA 50÷180 оснащаются спиральными компрессорами, пластинчатыми испарителями и центробежными вентиляторами. Охлаждение конденсатора происходит при ПОМОЩИ GVCA Агрегаты 50÷180 воздуховодов. комплектоваться накопительным баком, насосом, баком и насосом, а также интерфейсной платой RS485 для интеграции в систему диспетчеризации.

Конструкция

- Самонесущая конструкция из оцинкованной стали, окрашенная полиэфирной порошковой краской.
- Спиральные компрессоры со встроенным маслоотделителем, нагревателем картера (при необходимости), смотровым стеклом, защитой от перегрева и запорными клапанами.
- Испаритель паяный пластинчатый теплообменник из нержавеющей стали AISI 316 с одним контуром на стороне хладагента и одним на стороне воды в моделях 50÷130; с двумя независимыми контурами на стороне хладагента и одним контуром на стороне воды в моделях 150÷180. В агрегатах, работающих в режиме теплового насоса, всегда устанавливается
- электронагреватель для защиты теплообменника от размораживания.
- Центробежные вентиляторы с 3-х фазными двигателями, ременным приводом и регулируемым шкивом.
- Конденсатор изготовлен из медных труб с алюминиевым оребрением.
- Хладагент R410A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров вентиляторов.
- Микропроцессорная система контроля и регулирования.

Дополнительные опции

- **IM** Автоматы защиты
- **SL** Шумоизоляция компрессора
- **СС** Управление вентиляторами по давлению конденсации до -20°C наружного воздуха
- ВТ Низкотемпературный набор
- **DS** Пароохладитель
- RT Последовательная полная рекуперация тепла
- SI Инерционный бак
- **PS** Циркуляционный насос

PD - Два циркуляционных насоса

Дополнительные аксессуары:

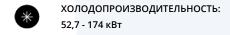
MN - Манометры высокого и низкого давлений

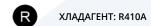
CR - Дистанционный автоматический пульт управления

IS - Интерфейсная плата RS 485

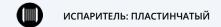
RP - Металлическая защитная решетка конденсатора

AG - Резиновые виброопоры




Габаритные размеры

			50	55	65	75	85	95	110	130	150	180
	STD	ММ	2350	2350	2350	2350	2350	2350	2350	2350	3550	3550
Длина	AP	ММ	2350	2350	2350	2350	2350	2350			3350	
	WP/AP	ММ	2350	2350	2350	2350	2350	2350			3350	
Ширина	STD	ММ	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Высота	STD	ММ	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005
Высота с баком	STD	ММ	2205	2205	2205	2205	2205	2205	2215	2215	2205	2205


ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVSA-FC 50÷180

Технические характеристики

GVSA-FC 50÷180			50	60	70	75	85	100	115	130	150	180
							MM					
	Холодопроизводительность (1)	кВт	52,7	59,5	68,1	76,7	85,7	99,1	114	130	151	174
Охлаждение	Потребляемая мощность (1)	кВт	18,1	20,3	23,3	26,1	29,3	36,8	42,2	48,4	54,4	64,9
Режим свобод.	Температура воздуха (2)	°C	21	13	0	-24	-35	10	0	-11	-30	-48
охлаждения	Потребляемая мощность (2)	кВт	2	2	2	2	2	6	6	6	8	8
	Количество	n°	2	2	2	2	2	3	3	3	4	4
Компрессоры	Фреоновые контуры	n°	1	1	1	1	1	1	1	1	2	2
	Кол-во ступеней производ-ти	n°			2				3			4
	Расход воды	л/с	2,72	3,07	3,52	3,96	4,43	5,09	5,88	6,7	7,78	8,93
Испаритель	Падение давления	кПа	115	105	120	100	100	100	135	145	102	106
	Подсоединения по воде	дюйм	2"	2"	2"	2"	2"	2″1/2	2″1/2	2"1/2	2"1/2	2″1/2
Конденсатор	Вентиляторы	n°	2	2	2	2	2	3	3	3	4	4
конденсатор	Расход воздуха	M³/C	83	83	83	81	81	147	147	147	167	167
	Электропитание	В/Ф/Ч					400/3	/ 50				
Электрические характеристики	Макс. рабочий ток	Α	43	46	53	57	66	84	90	103	116	133
характериетик	Пусковой ток	Α	166	168	176	189	233	207	223	270	248	300
	Напор насоса	кПа	125	130	115	125	115	195	155	135	165	155
Версия с баком	Объем накопительного бака	л	400	400	400	400	400	400	400	400	600	600
и насосом.	Расширительный бак	л	12	12	12	12	12	12	12	12	18	18
	Подсоединения по воде	дюйм	2″1/2	2"1/2	2"1/2	2″1/2	2"1/2	2"1/2	2"1/2	2″1/2	2"1/2	2″1/2
	Стандартный агрегат (3)	дБ	59	59	59	59	59	60	60	60	61	61
Звук. давление	SL (3)	дБ	57	57	57	57	57	58	58	58	59	59
Dos	Транспортный вес (4)	КГ	923	932	951	980	999	1308	1317	1350	1472	1510
Bec	Рабочий вес(4)	КГ	970	980	1000	1030	1050	1390	1400	1435	1560	1600

⁽¹⁾ Холодная вода (с 30%-ным содержанием этиленгликоля) 15/10 $^{\circ}$ С, наружная температура воздуха 35 $^{\circ}$ С.

38

⁽²⁾ Температура окружающего воздуха при которой достигается холодопроизводительность, указана в пункте 1.

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

⁽⁴⁾ Агрегат без бака и насоса.

^(*) Сторона С: сторона эл. Щита

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVSA-FC 50÷180

Описание

Воздухоохлаждаемые чиллеры серии GVSA-FC 50÷180 с функцией FREE COOLING предназначены для круглогодичного непрерывного охлаждения воды или гликолевых растворов в средних и больших системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры серии GVSA-FC 50÷180 применяются в сочетании с фанкойлами или с секциями водяного охлаждения

приточных установок. Холодильные машины GVSA-FC 50÷180 оснащаются спиральными компрессорами и пластинчатыми испарителями. Агрегаты GVSA-FC 50÷180 с функцией FREE COOLING (свободное охлаждение) могут в холодное время года охлаждать теплоноситель при выключенных компрессорах, что позволяет существенно снизить энергопотребление.

Конструкция

- Самонесущая конструкция из оцинкованной стали, окрашенная полиэфирной порошковой краской.
- Спиральные компрессоры со встроенным маслоотделителем, нагревателем картера (при необходимости), смотровым стеклом, защитой от перегрева и запорными клапанами.
- Осевые вентиляторы с непосредственным приводом от электродвигателя
- Конденсатор изготовлен из медных труб с алюминиевым оребрением.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров вентиляторов.
- Испаритель паяный пластинчатый теплообменник из нержавеющей стали AISI 316 с одним контуром на стороне хладагента и одним на стороне воды в моделях 50÷130; с двумя независимыми контурами на стороне хладагента и одним контуром на стороне воды в моделях 150-P÷180-P. В агрегатах, работающих в режиме теплового насоса, всегда устанавливается электронагреватель для защиты теплообменника от размораживания.
- Хладагент R410A
- Теплообменник для FREE-COOLING изготовлен из медных труб с алюминиевым оребрением.

Дополнительные опции

IM - Автоматы защиты

SL - Шумоизоляция компрессора

СС - Управление вентиляторами по давлению конденсации до -20°C наружного воздуха

ВТ - Низкотемпературный набор

DS - Пароохладитель

RT - Последовательная полная рекуперация тепла

SI - Инерционный бак

PS - Циркуляционный насос

PD - Два циркуляционных насоса Дополнительные аксессуары:

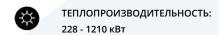
MN - Манометры высокого и низкого давлений

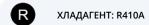
CR - Дистанционный автоматический пульт управления

IS - Интерфейсная плата RS 485

RP - Металлическая защитная решетка конденсатора

AG - Резиновые виброопоры


Габаритные размеры


			50	55	65	75	85	95	110	130	150	180
	STD	ММ	2350	2350	2350	2350	2350	2350	2350	2350	3550	3550
Длина	AP	ММ	2350	2350	2350	2350	2350	2350			3350	
	WP/AP	ММ	2350	2350	2350	2350	2350	2350			3350	
Ширина	STD	ММ	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Высота	STD	ММ	2005	2005	2005	2005	2005	2005	2005	2005	2005	2005
Высота с баком	STD	ММ	2205	2205	2205	2205	2205	2205	2215	2215	2205	2205

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMA 200÷1050



GVMA 200÷105	50		200	230	250	280	300	340	370	400	450	500	550	600	670	750	850	950	1050
											ММ								
	Холодопроизвод-ть (1)	кВт	199,0	226,0	251,0	276,0	304,0	335,0	367,0	403,0	444,0	495,0	546,0	602,0	671,0	751,0	845,0	942,0	1051,0
Охлаждение	Потребляемая мощность (1)	кВт	69,0	80,0	85,0	94,0	104,0	113,0	122,0	132,0	155,0	170,0	184,0	211,0	243,0	275,0	303,0	336,0	365,0
	Холодопроизвод-ть (2)	кВт	228,0	255,0	283,0	310,0	338,0	369,0	401,0	441,0	510,0	564,0	620,0	684,0	776,0	861,0	962,0	1078,0	1210,0
Нагрев	Потребляемая мощность (2)	кВт	73,0	83,0	90,0	103,0	108,0	121,0	132,0	141,0	164,0	182,0	202,0	223,0	249,0	282,0	312,0	349,0	383,0
	Количество	n°	3+3	3+3	3+3	3+3	4+4	4+4	4+4	5+5	5+5	6+6	6+6	6+6	6+6	6+6	6+6	6+6	6+6
Компрессоры	Фреоновые контуры	n°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Кол-во ступеней произв-сти	n°			6				8						1	0			
	Расход воды	л/с	9,5	10,8	12,0	13,2	14,5	16,0	17,5	19,3	21,2	23,7	26,1	28,8	32,1	35,9	40,4	45,0	50,2
Испаритель	Падение давления	кПа	40	51	62	54	50	49	59	47	59	49	60	58	49	41	51	42	52
	Подсоединения по воде	дюйм	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"	3"	6"	6"	6"	6"	6"
	Электропитание	В/Ф/Ч								400	/3/50								
Электрич. хар-ки	Макс. рабочий ток	Α	158	172	182	203	224	244	265	284	336	367	398	458	528	602	667	718	761
.,	Пусковой ток	Α	182	304	311	332	356	373	394	416	465	496	527	632	702	810	875	979	1022
Версия STD	Звуковое давление (3)	дБ	66	66	67	69	67	69	70	68	69	68	70	72	73	73	73	73	74
с функцией SL	Звуковое давление с опцией SL(3)	дБ	63	63	64	66	64	65	66	65	66	65	67	69	70	70	70	70	71
Версия SSL	Звуковое давление (3)	дБ	57	57	59	61	58	60	62	59	61	60	62	64	65	64	65		
	Напор насоса	кПа	239	218	290	269	287	274	260	241	214	240	233	224	210	253	234	213	183
Агрегат с насосом	Расширительный бак	л	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
c nacocow	Подсоединения по воде	DN	100	100	100	100	100	100	100	100	100	100	100	150	150	150	150	150	150
	Транспортный вес (4)	КГ	1654	1674	1763	1961	2199	2457	2566	2610	3179	3294	3463	3517	3682	4200	4518	4918	5044
Bec	Рабочий вес(4)	КГ	1670	1690	1780	1980	2220	2480	2590	2640	3210	3330	3500	3560	3730	4260	4580	5238	5354

⁽¹⁾ Холодная вода 12/7°С, наружная температура воздуха 35°С.

⁽²⁾ Горячая вода 40/45 °C, наружная температура воздуха 7 °C по сухому термометру / 6 °C по мокрому термометру

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

^(*) Длина с баком

^(**) Сторона С: сторона эл. щита

⁽N.B.) Вес версий WP указан в технической документации.

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMA 200÷1050

Описание

Воздухоохлаждаемые чиллеры и тепловые насосы серии GVMA 200÷1050 предназначены для охлаждения воды или гликолевых растворов в промышленных системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры GVMA 200÷1050 применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок. Чиллеры GVMA 200÷1050 надежны и универсальны. Холодильные машины GVMA 200÷1050 обеспечивают высокую энергоэффективность, низкие пусковые токи и низкий уровень шума благодаря плавному регулированию

скорости вентиляторов в зависимости от тепловой системы. нагрузки Большое количество компрессоров и высоконадежные компоненты существенно увеличивают их ресурс и исключают риск аварии. Остановка одного компрессора не влияет на работу всего агрегата, который продолжает выполнять СВОИ функции производительности. Агрегаты GVMA 200÷1050 могут комплектоваться накопительным баком, насосом, баком и насосом и имеют широкую гамму опций и аксессуаров.

Конструкция

- Самонесущая конструкция из оцинкованной стали, окрашенная полиэфирной порошковой краской.
- Спиральные компрессоры со встроенным маслоотделителем, нагревателем картера, защитой от перегрева, смотровым стеклом и запорными клапанами.
- Осевые вентиляторы с прямым приводом от электродвигателя.
- Конденсатор изготовлен из медных труб с алюминиевым оребрением.

- Испаритель кожухотрубный теплообменник с двумя независимыми холодильными контурами и одним водяным контуром.
- Хладагент R410A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкий предохранитель, защиты от перегрузки компрессоров и вентиляторов.
- Микропроцессорная система контроля и регулирования.

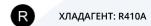
Дополнительные опции

IM - Автоматы защиты. **SL** - Шумоизоляция компрессора. **CT** - Управление вентиляторами по давлению конденсации до 0°C наружного воздуха. **CC** - Управление вентиляторами по давлению конденсации до -20°C наружного воздуха. **BT** - Низкотемпературный комплект. **SP** - Инерционный бак. **PS** - Один циркуляционный насос **PD** - Два циркуляционных насоса

Дополнительные аксессуары:

MN - Манометры высокого и низкого давлений. **CR** - Дистанционный автоматический пульт управления. **IS** - Интерфейсная плата RS 485. **RP** - Металлическая защитная решетка конденсатора. **FP** - Металлическая защитная решетка конденсатора с фильтром (за исключением WP). **AG** - Резиновые виброопоры. **AM** - Пружинные виброопоры. **FL** - Реле протока




Габаритные размеры

			200	230	250	280	300	340	370	400	450	500	550	600	670	750	850	950	1050
	STD	ММ	2800	2800	2800	2800	4000	4000	4000	4000	5000	5000	5000	5000	5000	6200	6200	7200	7200
Длина	SSL	ММ	2800	2800	2800	2800	4000	4000	4000	4000	5000	5000	5000	5000	6200	7200	7200		
	WP/SSL	ММ	2800	2800	2800	2800	4000	4000	4000	4000	5000	5000	5000	5000	6200	7200	7200		
Высота	STD	ММ	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Ширина	STD	ММ	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMA-FC 200÷1100

GVMA-FC 200÷	1100		200	240	260	290	330	370	400	440	480	540	590	670	740	830	920	1015	1100
											N	1M							
	Холодопроизвод-ть (1)	кВт	208,0	236,0	263,0	290,0	328,0	365,0	401,0	441,0	483,0	536,0	590,0	665,0	738,0	827,0	920,0	1014,0	1102,
Охлаждение	Потребляемая мощность (1)	кВт	76,0	87,0	88,0	98,0	108,0	123,0	132,0	147,0	163,0	179,0	199,0	230,0	266,0	305,0	340,0	368,0	412,0
Режим	Температура воздуха (2)	°C	-20	-28	-25	-02	-27	-35	-10	-20	-10	-22	-27	-30	-35	-25	-01	01	-04
свободн. охлаждения	Потребляемая мощность (2)	кВт	70,0	70,0	105,0	105,0	140,0	140,0	140,0	140,0	175,0	175,0	175,0	175,0	210,0	245,0	280,0	315,0	315,0
	Количество	n°	3+3	3+3	3+3	3+3	4+4	4+4	4+4	5+5	5+5	6+6	6+6	6+6	6+6	6+6	6+6	6+6	6+6
Компрессоры	Фреоновые контуры	n°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Кол-во ступеней произв-сти	n°				4				(5				8	3			
	Расход воды	л/с	11,0	12,4	13,9	15,3	17,3	19,3	21,2	23,3	25,5	28,3	31,1	35,1	38,9	43,6	48,5	53,5	58,1
Испаритель	Падение давления	кПа	102	126	165	124	112	106	115	100	120	121	132	148	152	172	151	162	173
	Подсоединения по воде	DN	100	100	100	100	100	100	100	100	100	125	125	125	150	150	150	150	150
	Электропитание	В/Ф/Ч								400	/3/50)							
Электрич. хар-ки	Макс. рабочий ток	Α	156	168	185	202	234	252	270	286	337	371	397	466	530	607	683	733	776
λαρ-κνί	Пусковой ток	Α	279	301	352	369	367	419	437	418	504	538	564	640	705	815	891	994	1037
Версия STD	Звуковое давление (3)	дБ	66	67	68	69	69	70	70	70	71	71	71	74	75	75	75	75	76
с функцией SL	Звуковое давление с опцией SL(3)	дБ	64	64	65	66	66	67	67	67	67	67	68	70	71	71	71	71	72
	Напор насоса	кПа	155	165	115	140	125	110	130	140	115	155	135	105	180	145	140	110	100
Агрегат	Расширительный бак	Л	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
с насосом	Подсоединения по воде	DN	100	100	100	100	100	100	100	100	100	125	125	125	150	150	150	150	150
D	Транспортный вес (4)	КГ	2175	2185	2360	2435	2990	3020	3220	3510	3920	4180	4220	5060	5240	5830	6880	7410	7530
Bec	Рабочий вес(4)	КГ	2310	2320	2500	2630	3190	3220	3470	3770	4250	4520	4560	5460	5650	6320	7600	8220	8340

⁽¹⁾ Холодная вода (с 30%-м содержанием этиленгликоля) 15/10°C, наружная температура воздуха 35°C.

⁽²⁾ Температура окружающего воздуха при которой достигается холодопроизводительность, указана в пункте 1.

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

^(*) Сторона С: сторона эл. щита

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMA-FC 200÷1100

Описание

Воздухоохлаждаемые чиллеры серии GVMA-FC 200÷1100 с функцией FREE COOLING предназначены для круглогодичного непрерывного охлаждения воды или гликолевых растворов в средних и больших системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры GVMA-FC 200÷1100 применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок. Холодильные машины GVMA-FC 200÷1100 оснащаются спиральными компрессорами и пластинчатыми испарителями. Агрегаты GVMA-FC 200÷1100 с функцией FREE COOLING (свободное охлаждение) могут в холодное время года охлаждать теплоноситель при

выключенных компрессорах, ЧТО позволяет существенно СНИЗИТЬ энергопотребление. Это происходит дополнительного за счет теплообменника, установленного В агрегатах, который охлаждается наружным воздухом с помощью осевых вентиляторов. При изменениях температуры наружного воздуха интеллектуальный контроллер при помощи электронного 3-ходового клапана переводит работу агрегата в основной режим охлаждения (с включенными компрессорами), либо FREE COOLING (с выключенными компрессорами), либо в смешанный режим работы (одновременная работа в основном режиме и режиме FREE COOLING).

Конструкция

- Самонесущая конструкция из оцинкованной стали, окрашенная полиэфирной порошковой краской.
- Спиральные компрессоры со смотровым стеклом, с защитой от перегрева и нагревателем картера компрессора (при необходимости).
- Конденсатор и теплообменник для системы FREE-COOLING изготовлены из медных труб с алюминиевым оребрением.
- Испаритель паяный пластинчатый теплообменник из нержавеющей стали марки AISI 316 с двумя независимыми контурами на стороне хладагента и на стороне воды.

- Осевые вентиляторы с непосредственным приводом от электродвигателя.
- Электронный термостатический вентиль (ТРВ).
- Хладагент R410A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкий предохранитель, защиту от перегрузки компрессоров и вентиляторов.
- Микропроцессорная система контроля и регулирования.

Дополнительные опции

- **IM** Автоматы защиты
- SL Шумоизоляция компрессора
- ВТ Низкотемпературный набор
- **PS** Циркуляционный насос
- **PD** Два циркуляционных насоса

Дополнительные аксессуары:

MN - Манометры высокого и низкого давлений

- **CR** Дистанционный автоматический пульт управления
- IS Интерфейсная плата RS 485
- **RP** Металлическая защитная решетка конденсатора
- **AG** Резиновые виброопоры
- **FL** Реле протока

Габаритные размеры

			200	240	260	290	330	370	400	440	480	540	590	670	740	830	920	1015	1100
Длина	STD	мм	4000	4000	4000	4000	5000	5000	5000	5000	6200	6200	6200	7200	7200	8400	9600	10600	10600
Высота	STD	ММ	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Ширина	STD	мм	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360	2360

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMA 220-V/X÷1600-V/X

теплопроизводительность: 225 - 1438 кВт

ХЛАДАГЕНТ: R134A

КОМПРЕССОР: ВИНТОВОЙ

ИСПАРИТЕЛЬ: КОЖУХОТРУБНЫЙ

Технические характеристики

GVMA 220-V/X÷	1600-V/X			220	260	300	350	400	450	550	700	800	950	1100	1200	1350	1500	1600
										MI	М							
	Холодопроизводительно	сть (1)	кВт	221,0	262,0	302,0	348,0	393,0	453,0	549,0	684,0	806,0	954,0	1089,0	1218,0	1347,0	1475,0	1597,0
Охлаждение	Потребляемая мощность	(1)	кВт	80,0	88,0	112,0	137,0	156,0	167,0	197,0	231,0	284,0	334,0	402,0	443,0	494,0	531,0	554,0
	Холодопроизводительно	сть (2)	кВт	225,0	255,0	289,0	338,0	390,0	457,0	536,0	662,0	767,0	850,0	1044,0	1172,0	1306,0	1438,0	
Нагрев	Потребляемая мощность	(2)	кВт	75,0	78,0	91,0	105,0	120,0	138,0	160,0	191,0	225,0	260,0	318,0	350,0	395,0	418,0	
	Количество		n°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Компрессоры	Фреоновые контуры		n°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Кол-во ступеней произв-с	ти	n°								6							
	Расход воды		л/с	10,6	12,5	14,4	16,6	18,8	21,6	26,2	32,7	38,5	45,6	52,0	58,2	64,4	70,5	76,3
Испаритель	Падение давления		кПа	50	49	38	50	53	43	54	57	55	53	62	55	55	60	82
	Подсоединения по воде		DN	100	100	125	125	125	125	150	150	200	200	200	200	200	200	250
	Электропитание		В/Ф/Ч							40	00/3/5	50						
Электрические х-ки	Макс. рабочий ток		Α	169	169	203	227	257	309	380	464	530	571	940	1050	1194	1202	1218
X-KVI	Пусковой ток		Α	244	244	261	317	332	451	491	612	766	900	1277	1425	1687	1695	1711
Версия STD	Звуковое давление (3)		дБ	68	68	68	68	68	67	69	69	70	69	70	71	72	73	74
с функцией SL	Звуковое давление с опц	ией SL(3)) дБ	65	65	65	65	65	64	65	65	66	65	66	67	68	69	70
Версия SSL	Звуковое давление (3)		дБ	57	57	57	57	58	58	59	59	59	60	61	61	63	63	
	Напор насоса		кПа	150	170	230	195	165	195	165	130	165	130	170	150	200	180	150
Агрегат с баком	Объем накопительного б	ака	Л	1100	1100	1100	1100	1100	2000	2000	2000	2000	2000					
и насосом	Расширительный бак		л	35	35	35	35	35	80	80	80	80	80	80	80	80	80	80
	Подсоединения по воде		DN	100	100	100	100	125	125	150	150	150	200	200	200	200	200	200
	Транспортный вес		КГ	2640	2730	2780	2920	3120	3800	4070	5270	5480	6250	7255	7715	8160	8840	10100
Bec	Рабочий вес		КГ	2740	2820	2920	3060	3250	3930	4330	5500	5770	6600	7710	8150	8700	9380	10620

⁽¹⁾ Холодная вода 12/7 °C, наружная температура воздуха 35°C.

(*) Сторона С: сторона эл. щита

(N.B.)

6 вентиляторов для WP.

8 вентиляторов для WP.

Вес версий SSL и WP указан в технической документации.

Вес версий WP указан в технической документации.

⁽²⁾ Горячая вода 40/45 °C, наружная температура воздуха 7°C по сухому термометру / 6°C по мокрому термометру

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMA 220-V/X÷1600-V/X

Описание

Воздухоохлаждаемые чиллеры и тепловые насосы серии GVMA 220-V/X÷1600-V/X предназначены для охлаждения воды или гликолевых растворов в промышленных системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры GVMA 220-V/X÷1600-V/X применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок. Холодильные машины GVMA 220-V/X÷1600-V/X оснащаются винтовыми компрессорами и кожухотрубными испарителями.

Использованию конденсаторов увеличенных размеров, высокоэффективных вентиляторов и винтовых компрессоров последних поколений, позволяет существенно повысить эффективность и значительно снизить энергопотребление. Агрегаты GVMA 220-V/X÷1600-V/X могут комплектоваться накопительным баком, насосом, баком и насосом и имеют широкую гамму опций и аксессуаров.

Конструкция

- Самонесущая конструкция из оцинкованной стали, окрашенная полиэфирной порошковой краской.
- Винтовые компрессоры со встроенным маслоотделителем, фильтром на всасывании, нагревателем картера, смотровым стеклом, защитой от перегрева, запорными вентилями на нагнетании и плавным управлением производительностью компрессора.
- Осевые вентиляторы с непосредственным приводом от электродвигателя.
- Конденсатор изготовлен из медных труб с алюминиевым оребрением.
- Электронный термостатический вентиль (ТРВ).

- Хладагент R134A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки для
- Микропроцессорная система контроля и регулирования.
- Электронное устройство для уменьшения уровня шума, с плавной регулировкой скорости вращения вентиляторов. Это устройство позволяет также эксплуатировать агрегаты до 0 ° С наружного воздуха.
- Испаритель кожухотрубный теплообменник с двумя независимыми холодильными контурами и одним водяным контуром.

Дополнительные опции

IM - Автоматы защиты. SL - Шумоизоляция компрессора. RZ - Компрессоры с бесступенчатым управлением производительности. CC - Управление вентиляторами по давлению конденсации до -20°С наружного воздуха. BT - Низкотемпературный набор. HR - Пароохладитель. HRT/S - Последовательная полная рекуперация тепла. HRT/P - Параллельная полная рекуперация тепла. SP - Инерционный бак. PU - Один циркуляционный насос. PD - Два циркуляционных насоса. SPU - Инерционный бак и один циркуляционный насос. SPD - Инерционный бак и два циркуляционных насоса. FE - Нагреватель испарителя. FU - Нагреватель для SPU. FD - Нагреватель SPD. SS - Плавный запуск. WM - система Веб мониторинга. CP - Сухие контакты

Дополнительные аксессуары:

RF - Фреоновые контуры с запорными вентилями. **CR** - Дистанционный автоматический пульт управления. **IS** - Интерфейсная плата RS 485. **RP** - Металлическая защитная решетка конденсатора. **FP** - Металлическая защитная решетка конденсатора с фильтром (за исключением WP). **AG** - Резиновые виброопоры. **AM** - Пружинные виброопоры. **FL** - Реле протока

Габаритные размеры

			220	260	300	350	400	450	550	700	800	950	1100	1200	1350	1500	1600
	STD	ММ	3350	3350	3350	3350	4400	5550	5550	6700	6700	7750	10050	10050	10050	11100	13400
Пенно	SSL	ММ	3350	3350	3350	4400	4400	5550	6700	7750	7750	10050	10050	11100	13400	13400	
Длина	WP	ММ	4400	4400	4400	4400	5550	6700	6700	7750	7750	8900	12250	12250	13400	13400	
	WP/SSL	ММ	4400	4400	4400	5550	5550	6700	6700	7750	8900	11100	13400	13400			
Высота	STD	ММ	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	STD	ММ	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2500	2500	2500	2500
Ширина	SSL	MM	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2500	2500	2500	2500	
	WP/SSL	ММ	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2500	2500			

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMA-FC 220-V/X÷1460-V/X

холодопроизводительность: 217 - 1460 кВт

ХЛАДАГЕНТ: R134A

КОМПРЕССОР: ВИНТОВОЙ

ИСПАРИТЕЛЬ: КОЖУХОТРУБНЫЙ

GVMA-FC 220-V/X÷14	60-V/X		220	260	315	380	420	470	570	700	850	1000	1140	1300	1460
								Mi	M						
0,450,450,446	Холодопроизводительность (1)	кВт	217,0	258,0	315,0	375,0	418,0	473,0	569,0	709,0	847,0	994,0	1139,0	1288,0	1460,0
Охлаждение	Потребляемая мощность (1)	кВт	83,0	97,0	114,0	148,0	157,0	184,0	210,0	263,0	316,0	370,0	434,0	490,0	541,0
Режим свобод.	Температура воздуха (2)	°C	-25	-20	-20	-45	-37	-40	-35	-43	-43	-46	-47	-41	-39
охлаждения	Потребляемая мощность (2)	кВт	8,0	12,0	12,0	12,0	12,0	16,0	20,0	20,0	22,0	22,0	25,0	29,0	36,0
	Количество	n°	2	2	2	2	2	2	2	2	2	2	2	2	2
Компрессоры	Фреоновые контуры	n°	2	2	2	2	2	2	2	2	2	2	2	2	2
	Кол-во ступеней производ-ти	n°						6							
	Расход воды	л/с	11,2	13,3	16,3	19,4	21,6	24,5	29,4	36,7	43,8	51,4	58,9	66,6	75,5
Испаритель	Падение давления	кПа	125	170	180	168	191	130	115	160	164	160	200	225	300
	Подсоединения по воде	DN	100	100	100	125	125	125	150	150	150	200	200	200	200
V	Вентиляторы	n°	4	6	6	6	6	8	10	10	12	12	14	16	20
Конденсатор	Расход воздуха	M³/C	211	289	261	261	287	344	425	458	539	572	661	756	944
_	Электропитание	В/Ф/Ч						400/3	/ 50						
Электрические характеристики	Макс. рабочий ток	Α	183	192	232	310	546	440	449	569	649	784	952	1071	1224
характеристики	Пусковой ток	Α	403	412	502	663	681	598	607	709	803	1012	1289	1446	1717
	Напор насоса	кПа	165	120	125	115	110	145	185	100	120	140	160	125	130
Версия с баком и насосом.	Расширительный бак	Л	35	35	80	80	80	80	80	80	80	80	80	80	80
и насосом.	Подсоединения по воде	DN	100	100	100	125	125	125	150	150	150	200	200	200	200
20/1/ 1/20/10/140	Стандартный агрегат (3)	дБ	68	69	69	69	69	70	71	71	71	71	72	73	75
Звук. давление	SL (3)	дБ	65	66	66	66	66	67	68	68	68	68	69	70	72
D	Транспортный вес (4)	КГ	3250	3320	3620	3805	4180	4510	5310	6820	7710	8605	9590	10070	11750
Bec	Рабочий вес (4)	КГ	3450	3520	3870	4060	4530	4850	5700	7420	8350	9410	10550	10900	12970

⁽¹⁾ Холодная вода (с 30%-ным содержанием этиленгликоля) 15°C/10°C, наружная температура воздуха 35 °C.

⁽²⁾Температура окружающего воздуха при которой достигается холодопроизводительность, указана в пункте 1.

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

⁽⁴⁾ Агрегат без бака и насоса.

^(*) Сторона А: сторона эл. Щита

ВОЗДУХООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMA-FC 220-V/X÷1460-V/X

Описание

GVMA-FC Воздухоохлаждаемые чиллеры серии 220-V/X÷1460-V/X с функцией COOLING FREE предназначены для круглогодичного непрерывного охлаждения воды или гликолевых растворов в средних и больших системах центрального кондиционирования или индустриальных системах охлаждения. Холодильные **GVMA-FC** машины оснащаются 220-V/X÷1460-V/X винтовыми компрессорами и кожухотрубными испарителями. Чиллеры с функцией FREE COOLING (свободное охлаждение) могут в холодное время года охлаждать теплоноситель при выключенных компрессорах, что

позволяет существенно снизить энергопотребление. происходит за счет дополнительного теплообменника, установленного в агрегатах, который охлаждается наружным воздухом с помощью осевых вентиляторов. При изменениях температуры наружного воздуха интеллектуальный контроллер при помощи электронного 3-ходового клапана переводит работу агрегата в основной режим охлаждения (с включенными компрессорами), либо FREE COOLING (с выключенными компрессорами), либо в смешанный режим работы (одновременная работа в основном режиме и режиме FREE COOLING).

Конструкция

- Несущая рама-основание, окрашенная полиэфирной порошковой краской.
- Винтовые компрессоры со встроенным маслоотделителем, нагревателем картера (при необходимости), смотровым стеклом, защитой от перегрева и запорными клапанами.
- Испаритель кожухотрубный теплообменник с двумя независимыми контурами на стороне хладагента и одним контуром на стороне воды.

- Электронный термостатический клапан (ТРВ).
- Хладагент R134A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров.
- Микропроцессорная система контроля и регулирования.

Дополнительные опции

- **IM** Автоматы защиты
- **RZ** Компрессоры с бесступенчатым управлением производительности
- ВТ Низкотемпературный комплект
- **HR** Пароохладитель
- **HRT** Последовательная полная рекуперация тепла
- **RF** Фреоновые контуры с запорными вентилями
- **FE** Нагреватель испарителя
- SS Плавный запуск
- **WM** Система Веб мониторинга
- СР Сухие контакты

Дополнительные аксессуары:

MN - Манометры высокого и низкого давлений

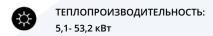
CR - Дистанционный автоматический пульт управления

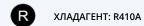
IS - Интерфейсная плата RS 485

AG - Резиновые виброопоры

АМ - Пружинные виброопоры

FL - Реле протока


Габаритные размеры


			220	260	315	380	420	470	570	700	850	1000	1140	1300	1460
Длина	STD	ММ	4400	4400	4400	4400	5550	5550	6700	10050	10050	10050	10050	11100	13400
Высота	STD	ММ	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Ширина	STD	ММ	2360	2360	2360	2360	2360	2360	2360	2360	2360	2750	2750	2750	2750

БЕСКОНДЕНСАТОРНЫЕ ЧИЛЛЕРЫ GVSL 4÷40

GVSL 4÷40			4	5	6	7	8	10	12	15	17	20	24	29	34	40
									М	И						
0	Холодопроизвод-ть (1)	кВт	4,0	5,1	6,2	7,3	8,5	10,1	12,1	14,5	17,0	20,0	24,1	28,8	33,9	41,5
Охлаждение	Потребляемая мощность (1)	кВт	1,4	1,8	2,1	3,0	3,3	3,7	3,3	5,2	6,0	7,1	7,8	9,3	10,9	13,3
Harnen	Холодопроизвод-ть (2)	кВт	5,1	6,4	8,2	9,4	10,7	13,2	15,5	18,5	22,0	25,9	30,4	36,4	43,0	53,2
Нагрев	Потребляемая мощность (2)	кВт	1,5	1,9	2,4	2,7	3,0	4,2	4,5	5,5	6,5	7,7	8,3	10,1	11,7	14,2
Компрессоры	Количество	n°	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Расход воды	л/с	1,9	2,4	3	3,5	4,1	4,8	5,8	6,9	8,1	9,6	11,5	13,8	16,2	19,8
Испаритель	Падение давления	кПа	15	15	20	18	20	25	35	28	35	39	40	45	40	40
	Подсоединения по воде	дюйм	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"
	Вход линии нагнетания	Ø	12	12	12	12	12	12	16	16	16	16	22	22	22	22
Подсоединения	Выход жидкостной линии	Ø	10	10	10	10	10	10	12	12	12	12	12	12	12	16
	Электропитание	В/Ф/Ч						400 /	'3 + N /	50						
Электрические характеристики	Макс. рабочий ток	Α	7	9	11	12	15	18	8	10	10	12	23	29	30	30
ларантертетти	Пусковой ток	Α	37	43	11	63	79	86	58	61	58	74	142	147	142	142
	Напор насоса	кПа	50	45	62	70	70	60	180	170	140	110	215	130	155	235
Версия с баком	Объем накопительного бака	Л	50	50	75	50	50	50	50	50	50	50	150	150	150	150
и насосом	Расширительный бак	Л	2	2	50	2	2	2	2	2	2	2	5	5	5	5
	Подсоединения по воде	дюйм	1"	1"	2	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"
Звук. давление	Стандартный агрегат (3)	дБ	36	36	1"	36	37	39	39	40	41	43	43	43	44	44
D	Транспортный вес (4)	КГ	74	75	36	81	84	87	86	89	91	93	183	189	195	206
Bec	Рабочий вес (4)	КГ	75	76	77	82	85	88	88	91	93	95	186	192	198	209

¹⁾ Холодная вода 12/7°C, температура конденсации 50°C.

⁽²⁾ Горячая вода 40/45°C, температура испарения 0°C.

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

⁽⁴⁾ Агрегат без бака и насоса.

⁽⁵⁾ Блок с насосом и баком (ISO 3744).

^(*) Сторона D: сторона эл. щита

⁽N.B.) Вес версий WP указан в технической документации.

БЕСКОНДЕНСАТОРНЫЕ ЧИЛЛЕРЫ GVSL 4÷40

Описание

Бесконденсаторные чиллеры и тепловые насосы серии GVSL 4÷40 предназначены для охлаждения воды или гликолевых растворов в малых и средних системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры GVSL 4÷40 применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок и используются совместно с выносными

конденсаторами. Чиллеры GVSL 4÷40 предназначены для установки внутри помещений и оснащаются спиральными компрессорами и пластинчатыми испарителями. Агрегаты GVSL 4÷40 производятся в версиях с накопительным баком, с насосом, с баком и насосом и поставляются с установленными на заводе опциями и дополнительными аксессуарами.

Конструкция

- Агрегат с несущей рамой из сплава Peraluman на резиновых амортизаторах, панели изготовлены из оцинкованных стальных листов.
- Спиральные компрессоры с защитой от перегрева и нагревателем картера (при необходимости).
- Осевые вентиляторы с низким расходом воздуха и особым профилем лопатки с непосредственным приводом от электродвигателя.
- Конденсатор изготовлен из медных труб с алюминиевым оребрением, для версии с тепловым насосом (WP) комплектуется поддоном для сбора конденсата.
- Микропроцессорная система контроля и регулирования.

- Испаритель паяный пластинчатый теплообменник из нержавеющей стали марки AISI 316 встроенный в накопительный бак.
- Хладагент R410A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров вентиляторов.
- Водяной контур включает в себя: дифференциальный датчик давления, аккумулирующий бак, циркуляционный насос, предохранительный клапан, и манометр. Расширительный бак интегрирован в бак-аккумулятор.

Дополнительные опции

BT - Низкотемпературный комплект Дополнительные аксессуары:

PS - Циркуляционный насос

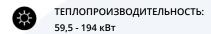
РВ - Прессостат низкого давления

CR - Дистанционный автоматический пульт управления

IS - Интерфейсная плата RS 485

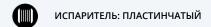
AG - Резиновые виброопоры

Габаритные размеры


			4	5	6	7	8	10	12	15	17	20	24	29	34	40
	STD	ММ	550	550	550	550	550	550	550	550	550	550	550	550	550	550
Длина	SP	ММ	550	550	550	550	550	550	550	550	550	550	1100	1100	1100	1100
	WP/SP	ММ	550	550	550	550	550	550	550	550	550	550	1100	1100	1100	1100
Высота	STD	ММ	550	550	550	550	550	550	550	550	550	550	550	550	550	550
Ширина	STD	ММ	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200

40

БЕСКОНДЕНСАТОРНЫЕ ЧИЛЛЕРЫ GVSL 50÷180



GVSL 50÷180			50	57	65	75	87	100	115	135	150	180
							ММ					
0,450,450,440	Холодопроизводительность (1)	кВт	50,8	57,1	64,3	73,6	87,1	98,8	114,0	134,0	149,0	176,0
Охлаждение	Потребляемая мощность (1)	кВт	15,4	17,3	19,0	21,6	25,8	29,4	32,9	38,7	43,5	51,5
Harnen	Холодопроизводительность (2)	кВт	59,5	65,8	74,3	84,7	96,5	107,0	122,0	148,0	157,0	194,0
Нагрев	Потребляемая мощность (2)	кВт	18,0	20,0	22,3	24,7	27,8	32,8	37,2	41,1	50,8	56,5
	Количество	n°	2	2	2	2	2	3	3	3	4	4
Компрессоры	Фреоновые контуры	n°	1	1	1	1	1	1	1	1	2	2
	Кол-во ступеней производ-ти	n°			2				3			4
	Расход воды	л/с	2,4	2,7	3,1	3,5	4,2	4,7	5,4	6,4	7,1	8,4
Испаритель	Падение давления	кПа	47	42	41	42	40	48	44	51	41	40
	Подсоединения по воде	дюйм	1"1/4	1"1/4	1"1/4	1"1/4	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2″1/2
Полековличения	Вход линии нагнетания	Øмм	28	28	28	28	28	28	28	28	2 x 28	2 x 28
Подсоединения	Выход жидкостной линии	Øмм	22	22	22	22	22	22	22	22	2 x 22	2 x 22
	Электропитание	В/Ф/Ч				4	00/3/50)				
Электрические характеристики	Макс. рабочий ток	А	38	41	44	49	59	66	73	88	97	117
ларактеристики	Пусковой ток	А	161	163	140	165	204	162	189	233	213	262
	Напор насоса	кПа	105	110	100	135	120	130	120	110	120	100
Версия с баком	Объем накопительного бака	Л	300	300	300	300	300	300	300	300	300	300
и насосом	Расширительный бак	л	12	12	12	12	12	12	12	12	12	12
	Подсоединения по воде	дюйм	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2
2	STD(3)	дБ	55	56	56	57	58	57	57	59	59	60
Звук. давление	SL(3)	дБ	50	51	51	52	53	52	52	54	54	55
Dos	Транспортный вес (4)	КГ	347	357	376	386	397	562	581	595	669	708
Bec	Рабочий вес(4)	КГ	350	360	380	390	405	570	590	605	680	720

⁽¹⁾ Холодная вода 12/7°С, температура конденсации 50°С.

⁽²⁾ Горячая вода 40/45°C, температура испарения 0°C.

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

⁽⁴⁾ Агрегат без бака и насоса.

⁽⁵⁾ Агрегат с насосом и баком.

^(*) Сторона С: сторона эл. щита

⁽N.B.) Вес версий WP указан в технической документации.

БЕСКОНДЕНСАТОРНЫЕ ЧИЛЛЕРЫ GVSL 50÷180

Описание

Бесконденсаторные чиллеры и тепловые насосы серии GVSL 50÷180 предназначены для охлаждения воды или гликолевых растворов в средних и больших системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры GVSL 50÷180 применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок и используются совместно с выносными

конденсаторами. Холодильные машины серии GVSL 50÷180 оснащаются спиральными компрессорами и пластинчатыми испарителями. Агрегаты GVSL 50÷180 могут комплектоваться накопительным баком, насосом, баком и насосом, а также интерфейсной платой ModBus RS485 для интеграции в систему диспетчеризации.

Конструкция

- Самонесущая конструкция из оцинкованной стали, окрашенная полиэфирной порошковой краской.
- Испаритель паяный пластинчатый теплообменник из нержавеющей стали AISI 316 с одним контуром на стороне хладагента и одним на стороне воды в моделях 50-Р÷130-Р; с двумя независимыми контурами на стороне хладагента и одним контуром на стороне воды в моделях 150-Р÷180-Р. В агрегатах, работающих в режиме теплового насоса, всегда устанавливается электронагреватель для защиты теплообменника от размораживания.
- Спиральные компрессоры со встроенным маслоотделителем, нагревателем картера (при необходимости), смотровым стеклом, защитой от перегрева и запорными клапанами.
- Хладагент R410A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров.
- Микропроцессорная система контроля и регулирования.

Дополнительные опции

IM - Автоматы защиты

SL - Шумоизоляция компрессора

ВТ - Низкотемпературный комплект

DS - Пароохладитель

RT - Последовательная полная рекуперация тепла

Дополнительные аксессуары:

MN - Манометры высокого и низкого давлений

CR - Дистанционный автоматический пульт управления

IS - Интерфейсная плата RS 485

SPU - Инерционный бак и один циркуляционный насос

SPD - Инерционный бак и два циркуляционных насоса

AG - Резиновые виброопоры

Габаритные размеры

			50	57	65	75	87	100	115	135	150	180
	STD	ММ	1200	1200	1200	1200	1200	2285	2285	2285	2285	2285
Длина	STD	мм	2310	2310	2310	2310	2310	3395	3395	3395	3395	3395
	STD	ММ	2310	2310	2310	2310	2310	3395	3395	3395	3395	3395
Высота	STD	ММ	680	680	680	680	680	680	680	680	680	680
Ширина	STD	ММ	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520

БЕСКОНДЕНСАТОРНЫЕ ЧИЛЛЕРЫ GVML 240-V/X÷2170-V/X

ХЛАДАГЕНТ: R134A

КОМПРЕССОР: ВИНТОВОЙ

ИСПАРИТЕЛЬ: КОЖУХОТРУБНЫЙ

GVML 240-V/	K÷2170-V/X		235	280	325	375	425	525	600	670	780	900	1015	1140	1280	1430	1570	1730	1910	2170
												MM								
Охлаждение	Холодопроизвод-ты (1)	' кВт	235,0	279,0	325,0	375,0	424,0	526,0	599,0	672,0	778,0	905,0	1015,0	1140,0	1282,0	1433,0	1566,0	1733,0	1909,0	2168,0
Охлаждение	Потребляемая мощность (1)	кВт	73,0	85,0	103,0	118,0	133,0	158,0	176,0	193,0	228,0	262,0	296,0	327,0	364,0	417,0	456,0	498,0	550,0	631,0
	Количество	n°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3
Компрессоры	Фреоновые контуры	n°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3
	Кол-во ступеней производ-ти	n°								2										
	Расход воды	л/с	11,2	13,3	15,5	17,9	20,3	25,1	28,6	32,1	37,2	43,2	48,5	54,5	61,3	68,5	74,8	82,8	91,2	104,0
Испаритель	Падение давления	кПа	49	34	39	41	34	50	48	55	51	57	55	56	52	69	78	57	67	95
	Подсоединения по воде	DN	100	125	125	125	125	150	150	150	150	150	200	200	200	200	250	250	250	250
Подсоедине	Вход линии нагнетания	Øмм	2 x 42	2 x 42	2 x 54	2 x 54	2 x 54	2 x 64	2 x 64	2 x 76	2 x 76	2 x 76	2 x 76	2 x 89	2 x 89	2 x 89	3 x 76	3 x 89	3 x 89	3 x 89
ния	Выход жидкостной линии	Øмм	2 x 35	2 x 42	2 x 42	2 x 42	2 x 54	3 x 54	3 x 54	3 x 54	3 x 54									
	Электропитание	В/Ф/Ч								400 /	3 / 50									
Электрич. хар-ки	Макс. рабочий ток	Α	157	193	213	243	280	344	381	431	495	558	642	740	832	935	963	1110	1248	1403
	Пусковой ток	Α	381	470	387	473	635	818	552	576	622	732	916	1073	1199	1344	1237	1443	1615	1811
Звук.	STD(2)	дБ	69	69	70	70	69	70	70	72	73	74	78	79	83	85	80	82	83	87
давление	SL	дБ	64	64	65	65	64	65	65	67	68	69	73	74	78	80				
Bec	Транспортный вес	КГ	1480	1820	1840	1860	1900	2420	2540	2590	3190	3225	3525	4445	4530	4600	4980	6430	6555	6740
DEC	Рабочий вес	КГ	1570	1960	1990	2010	2040	2680	2820	2850	3460	3480	3980	4980	5040	5100	5570	7130	7290	7440

⁽¹⁾ Холодная вода 12/7°С, температура конденсации 50°С.

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

^(*) Сторона С: сторона эл. щита

⁽N.B.) Вес версий WP указан в технической документации.

БЕСКОНДЕНСАТОРНЫЕ ЧИЛЛЕРЫ GVML 240-V/X÷2170-V/X

Описание

Бесконденсаторные чиллеры серии GVML 240-V/X÷2170-V/X предназначены для охлаждения воды или гликолевых растворов в промышленных системах кондиционирования или индустриальных системах охлаждения. Чиллеры серии GVML применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок и используются совместно с выносными

конденсаторами. Чиллеры GVML 240-V/X÷2170-V/X предназначены для установки внутри помещений и оснащаются винтовыми компрессорами и кожухотрубными испарителями. Чиллеры GVML 240-V/X÷2170-V/X производятся в стандартном и низкошумном исполнении, могут оснащаться интерфейсной платой ModBus RS485 для интеграции в систему диспетчеризации.

Конструкция

- Несущая рама-основание, окрашенная полиэфирной порошковой краской.
- Винтовые компрессоры со встроенным маслоотделителем, нагревателем картера (при необходимости), смотровым стеклом, защитой от перегрева и запорными клапанами.
- Испаритель кожухотрубный теплообменник с двумя независимыми контурами на стороне хладагента и одним контуром на стороне воды.

- Хладагент R134A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров.
- Микропроцессорная система контроля и регулирования.
- Электронный термостатический клапан (ТРВ).

Дополнительные опции

IM - Автоматы защиты

RZ - Компрессоры с бесступенчатым управлением производительности

ВТ - Низкотемпературный комплект

HR - Пароохладитель

HRT - Последовательная полная рекуперация тепла

RF - Фреоновые контуры с запорными вентилями

FE - Нагреватель испарителя

SS - Плавный запуск

WM - Система Веб мониторинга

СР - Сухие контакты

Дополнительные аксессуары:

MN - Манометры высокого и низкого давлений

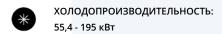
CR - Дистанционный автоматический пульт управления

IS - Интерфейсная плата RS485

AG - Резиновые виброопоры

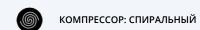
АМ - Пружинные виброопоры

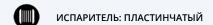
FL - Реле протока


Габаритные размеры

			235	280	325	375	425	525	600	670	780	900	1015	1140	1280	1430	1570	1730	1910	2170
Длина	STD	ММ	3300	3300	3700	3700	3700	3800	4000	4000	4300	4300	4300	5100	5100	5100	4800	5300	5300	5300
Высота	STD	ММ	800	800	800	800	800	1080	1080	1080	1080	1080	1080	1080	1080	1080	1600	1600	1600	1600
Ширина	STD	ММ	1700	1700	1700	1700	1700	1700	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100	2100

73


ВОДООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVSW 55÷200



GVSW 55÷200	холодопроизводительность (1) Потребляемая мощность (1) Холодопроизводительность (2) Потребляемая мощность (2) Количество Фреоновые контуры Кол-во ступеней производ-ти Расход воды Падение давления Подсоединения по воде Расход воды		55	60	70	80	100	112	130	150	170	200
							MM					
Охлаждение	Холодопроизводительность (1)	кВт	55,4	62,5	72,1	82,5	97,2	112,0	130,0	149,0	170,0	195,0
Охлаждение	Потребляемая мощность (1)	кВт	128,0	143,0	166,0	187,0	218,0	257,0	285,0	328,0	377,0	437,0
Нагрев	Холодопроизводительность (2)	кВт	725,0	801,0	933,0	105,0	121,0	140,0	159,0	180,0	205,0	237,0
пагрев	Потребляемая мощность (2)	кВт	180,0	200,0	232,0	257,0	288,0	332,0	384,0	427,0	517,0	567,0
	Количество	n°	2	2	2	2	2	3	3	3	4	4
Компрессоры	Фреоновые контуры	n°	1	1	1	1	1	1	1	1	2	2
	Кол-во ступеней производ-ти	n°			2				3			4
	Расход воды	л/с	2,7	3,0	3,4	3,9	4,6	5,4	6,2	7,1	8,1	9,3
Испаритель	Падение давления	кПа	54	48	49	51	44	57	53	59	49	48
	Подсоединения по воде	дюйм	1"1/4	1″1/4	1″1/4	1"1/4	2"1/2	2"1/2	2″1/2	2″1/2	2"1/2	2"1/2
	Расход воды	л/с	3,3	3,7	4,2	4,8	5,7	6,6	7,6	8,7	9,9	11,4
Конденсатор	Падение давления	кПа	47	51	52	43	46	54	36	39	43	48
	Подсоединения по воде	дюйм	1"1/4	1″1/4	1″1/4	2"1/2	2"1/2	2"1/2	2"1/2	2″1/2	2"1/2	2"1/2
	Электропитание	В/Ф/Ч					400 /	3 / 50				
Электрические характеристики	Макс. рабочий ток	А	38	41	48	52	61	71	77	91	103	121
характеристики	Пусковой ток	Α	161	163	171	184	228	195	210	258	235	288
	Напор насоса	кПа	105	110	100	135	120	130	120	110	120	100
Версия с баком	Объем накопительного бака	л	300	300	300	300	300	300	300	300	300	300
и насосом	Расширительный бак	л	12	12	12	12	12	12	12	12	12	12
	Подсоединения по воде	дюйм	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2
2======================================	Стандартный агрегат (3)	дБ	55	56	56	57	58	57	57	59	59	60
Звук. давление	SL(3)	дБ	50	51	51	52	53	52	52	54	54	55
Bec	Транспортный вес (4)	КГ	384	393	411	423	453	622	658	681	767	803
DEC	Рабочий вес(4)	КГ	390	400	420	435	470	640	680	705	790	830

⁽¹⁾ Холодная вода 12/7°C, температура конденсации 50°C.

⁽²⁾ Горячая вода 40/45°С, температура испарения 0°С.

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

⁽⁴⁾ Агрегат без бака и насоса.

⁽⁵⁾ Блок с насосом и баком (ISO 3744).

^(*) Сторона D: сторона эл. щита

⁽N.B.) Вес версий WP указан в технической документации.

ВОДООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVSW 55÷200

Описание

Водоохлаждаемые чиллеры и тепловые насосы серии GVSW 55÷200 предназначены для охлаждения воды или гликолевых растворов в средних и больших системах центрального кондиционирования или индустриальных системах охлаждения. Чиллеры GVSW 55÷200 применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок и используются совместно с градирней или драйкулером. Холодильные машины

GVSW 55÷200 предназначены для установки внутри помещений и оснащаются спиральными компрессорами и пластинчатыми теплообменниками. Агрегаты GVSW 55÷200 могут комплектоваться накопительным баком, насосом, баком и насосом, пароохадителем, рекуперацией, интерфейсной платой ModBus RS 485 для интеграции в систему диспетчеризации.

Конструкция

- Самонесущая рама, окрашенная полиэфирной порошковой краской.
- Спиральные компрессоры с защитой от перегрева, смотровым стеклом и нагревателем картера компрессора (при необходимости).
- Конденсатор паяный пластинчатый теплообменник из нержавеющей стали марки AISI 316: с одним холодильным контуром и одним водяным для моделей GVSW 55÷150; с двумя холодильными контурами и одним водяным контуром для моделей 170÷200.
- Микропроцессорный контроль и система управления
- Испаритель паяный пластинчатый теплообменник из нержавеющей стали марки AISI 316: с одним холодильным контуром и одним водяным для моделей GVSW 55÷150; с двумя холодильными контурами и одним водяным контуром для моделей 170÷200. Испаритель комплектуется водяным дифференциальным реле давления.
- Хладагент R410A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров.

Дополнительные опции

IM - Автоматы защиты

SL – Низкошумное исполнение

ВТ - Низкотемпературный набор

DS - Пароохладитель

RT - Последовательная полная рекуперация тепла Дополнительные аксессуары:

MN - Манометры высокого и низкого давлений

CR - Дистанционный автоматический пульт управления **IS** - Интерфейсная плата RS 485

SPU - Инерционный бак и один циркуляционный насос

SPD - Инерционный бак и два циркуляционных насоса

PV2 - 2-х ходовой прессостатический клапан

PV3 - 3-х ходовой прессостатический клапан

AG - Резиновые виброопоры

Габаритные размеры

			55	60	70	80	100	112	130	150	170	200
Длина	STD	ММ	1200	1200	1200	1200	1200	2285	2285	2285	2285	2285
Длина (STD+SPU)	STD	ММ	2310	2310	2310	2310	2310	3395	3395	3395	3395	3395
Длина (STD+SPD)	STD	ММ	2310	2310	2310	2310	2310	3395	3395	3395	3395	3395
Высота	STD	ММ	680	680	680	680	680	680	680	680	680	680
Ширина	STD	ММ	1520	1520	1520	1520	1520	1520	1520	1520	1520	1520

ВОДООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMW 225÷1242

ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ: 290 - 1 531 кВт

R ХЛАДАГЕНТ: R410A

КОМПРЕССОР: СПИРАЛЬНЫЙ

испаритель: пластинчатый

GVMW 225-500)		225	250	280	310	350	380	420	460	500	560	620	700	790	900	1015	1130	1242
											N	1M							
	Холодопроизвод-ть (1)	кВт	224,0	250,0	274,0	308,0	345,0	383,0	422,0	462,0	509,0	562,0	622,0	696,0	786,0	895,0	1015,0	1129,0	1242,0
Охлаждение	Потребляемая мощность (1)	кВт	52,0	57,0	63,0	70,0	78,0	86,0	95,0	104,0	115,0	129,0	144,0	157,0	176,0	204,0	230,0	261,0	287,0
James	Холодопроизвод-ть (2)	кВт	290,0	320,0	349,0	394,0	437,0	484,0	534,0	584,0	640,0	710,0	783,0	874,0	986,0	1113,0	1255,0	1391,0	1531,0
Нагрев	Потребляемая мощность (2)	кВт	66,0	74,0	80,0	88,0	101,0	111,0	119,0	135,0	144,0	164,0	181,0	203,0	224,0	259,0	289,0	321,0	357,0
	Количество	n°	6	6	6	6	8	8	8	10	10	12	12	12	12	12	12	12	12
Компрессоры	Фреоновые контуры	n°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Кол-во ступеней произв-сти	n°			6					8					1	0			
	Расход воды	л/с	10,7	11,9	13,1	14,7	16,5	18,3	20,2	22,1	24,3	26,9	29,7	33,3	37,6	42,8	48,5	53,9	59,3
Испаритель	Падение давления	кПа	54	51	56	56	60	47	52	60	57	70	59	60	53	66	61	70	79
·	Подсоединения по воде	DN	80	80	80	80	80	80	80	80	80	80	80	150	150	150	150	150	150
	Расход воды	л/с	13,2	14,7	16,1	18,1	20,2	22,4	24,7	27,0	29,8	33,0	36,6	40,8	46,0	52,5	59,5	66,4	73,1
Конденсатор	Падение давления	кПа	70	74	81	76	67	59	65	75	76	70	77	60	53	65	61	70	78
	Подсоединения по воде	DN	80	80	80	80	80	80	80	80	80	80	80	150	150	150	150	150	150
	Электропитание	В/Ф/Ч								400	/3/50								
Электрич-ие хар-ки	Макс.рабочий ток	Α	141		163	180	205	223	240	256	300	334	360	429	486	556	626	668	710
	Пусковой ток	Α	265	154	330	347	338	390	407	389	467	501	527	604	661	764	834	929	971
	Стандарт. агрегат (3)	дБ	62	286	65	65	65	66	66	66	67	67	68	71	72	73	73	74	74
Звук. давление	SL(3)	дБ	58	64	61	61	61	62	62	62	63	63	63	67	68	69	69	70	70
	SSL(3)	дБ	55	60	57	57	57	58	58	58	59	59	59	63	64	65	65	66	66
	Транспортный вес (4)	КГ	1047	56	1123	1159	1352	1422	1442	1642	1730	1930	1968	2806	2884	3184	3558	3658	3708
Bec	Рабочий вес(4)	КГ	1080	1103	1160	1200	1400	1480	1500	1700	1800	2000	2050	2900	3000	3300	3700	3800	3850

⁽¹⁾ Холодная вода 12/7°С, температура воды на конденсаторе 30/35°С.

⁽²⁾ Горячая вода 40/45°С. Охлаждённая вода 15/10°С.

⁽³⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

^(*) Сторона С: сторона эл. щита

⁽N.B.) Вес для версий SSL и WP указаны в технической документации

ВОДООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMW 225÷1242

Описание

Водоохлаждаемые чиллеры серии GVMW 225÷1242 предназначены для охлаждения воды или гликолевых растворов в промышленных системах кондиционирования или индустриальных системах охлаждения. Интеллектуальная система управления регулирует холодопроизводительность агрегата в зависимости от тепловой нагрузкой системы и оптимизирует время работы спиральных Чиллеры компрессоров. **GVMW** 225÷1242 применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок и используются совместно с градирней или

драйкулером. Агрегаты серии GVMW 225÷1242 имеют компактные размеры и предназначены для установки внутри помещений. Большое количество компрессоров и высоконадежные компоненты, существенно увеличивают их ресурс и исключают риск аварии. Остановка одного компрессора не влияет на работу всего агрегата, который продолжает выполнять функции на Чиллеры GVMW 225÷1242 производительности. производятся в стандартном и низкошумном исполнении.

00

Конструкция

- Самонесущая рама, окрашенная полиэфирной порошковой краской. Спиральные компрессоры с защитой от перегрева, смотровым стеклом и нагревателем картера компрессора (при необходимости).
- Конденсатор паяный пластинчатый теплообменник из нержавеющей стали марки AISI 316 с двумя независимыми контурами на стороне хладагента и на стороне воды. В агрегатах с тепловым насосом устанавливается электронагреватель для защиты теплообменника от размораживания.
- Электронный термостатический вентиль
- Хладагент R410A.

- Испаритель паяный пластинчатый теплообменник из нержавеющей стали марки AISI 316 с двумя независимыми контурами на стороне хладагента и на стороне воды. В агрегатах с тепловым насосом устанавливается электронагреватель для защиты теплообменника от размораживания.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров.
- Микропроцессорная система контроля и регулирования.

Дополнительные опции

IM - Автоматы защиты

SL – Низкошумное исполнение

ВТ - Низкотемпературный набор

DS - Пароохладитель

RT - Последовательная полная рекуперация тепла

Дополнительные аксессуары:

MN - Манометры высокого и низкого давлений

CR - Дистанционный автоматический пульт управления

IS - Интерфейсная плата RS485

PV2 - 2-х ходовой клапан

PV3 - 3-х ходовой клапан

AG - Резиновые виброопоры

Габаритные размеры

			225	250	280	310	350	380	420	460	500	560	620	700	790	900	1015	1130	1242
Длина	STD	ММ	2500	2500	2500	2500	3000	3000	3000	3550	3550	4000	4000	4650	4650	4650	4650	4650	4650
Высота	STD	ММ	800	800	800	800	800	800	800	800	800	800	800	1350	1350	1350	1350	1350	1350
Ширина	STD	ММ	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900

ВОДООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMW 260-V/X÷2470-V/X

- холодопроизводительность: 267 - 2 473 кВт
- теплопроизводительность: 293 - 2 589 кВт
- ХЛАДАГЕНТ: R134A
- КОМПРЕССОР: ВИНТОВОЙ
- ИСПАРИТЕЛЬ: КОЖУХОТРУБНЫЙ

GVMW 260-V	/X÷2470-V/X		260	320	375	425	490	580	660	750	890	1050	1160	1290	1440	1610	1790	1980	220	2470
												MM								
0	Холодопроизвод-ты (1)	° кВт	267,0	323,0	374,0	426,0	488,0	577,0	660,0	750,0	892,0	1049,0	1159,0	1286,0	1438,0	1612,0	1789,0	1981,0	2204,0	2473,0
Охлаждение	Потребляемая мощность (1)	кВт	57,0	69,0	80,0	90,0	99,0	123,0	136,0	150,0	182,0	210,0	234,0	256,0	287,0	323,0	357,0	395,0	443,0	500,0
Harnon	Холодопроизвод-ть (2)	кВт	293,0	354,0	409,0	465,0	533,0	628,0	719,0	819,0	977,0	11,5	12,5	13,7	15,3	17,1	19,0	20,7	23,0	25,9
Нагрев	Потребляемая мощность (2)	кВт	67,0	80,0	93,0	105,0	120,0	149,0	166,0	185,0	221,0	259,0	296,0	332,0	377,0	413,0	444,0	497,0	556,0	620,0
	Количество	n°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3
Компрессоры	Фреоновые контуры	n°	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3
	Кол-во ступеней производ-ти	n°							6										9	
	Расход воды	л/с	12,8	15,4	17,9	20,4	23,3	27,6	31,5	35,8	42,6	50,1	55,4	61,4	68,7	77,0	85,5	94,7	105,0	118,0
Испаритель	Падение давления	кПа	51	43	55	60	48	61	67	66	47	62	51	59	65	81	77	74	65	119
	Подсоединения по воде	DN	100	125	125	125	125	150	150	150	200	200	200	200	200	200	250	250	250	250
	Расход воды	л/с	15,5	18,7	21,7	24,7	28,0	33,4	38,0	43,0	51,3	60,2	66,6	73,7	82,4	92,5	103,0	114,0	126,0	142,0
Конденсатор	Падение давления	кПа	43	49	51	47	36	52	48	45	57	49	66	77	66	63	66	78	73	63
	Подсоединения по воде	DN	65	65	65	65	80	80	80	80	80	100	100	100	100	125	100	100	100	125
	Электропитание	В/Ф/Ч								400	/3/50									
Электрич. хар-ки	Макс. рабочий ток	Α	178	214	238	270	292	354	398	438	456	536	552	660	734	804	828	990	1101	1206
·	Пусковой ток	Α	247	265	333	349	448	479	501	566	575	615	738	774	952	1067	931	988	1187	1337
Звук.	Стандартный агрегат (3)	дБ	69	69	70	70	69	70	70	72	73	74	78	79	83	85	80	82	83	87
давление	SSL(3)	дБ	64	64	65	65	64	65	65	67	68	69	73	74	78	80				
Des	Транспортный вес (4)	КГ	2124	2183	2309	2340	2973	3121	3174	4274	4613	4645	4650	5360	5440	6000	7050	8450	8600	9250
Bec	Рабочий вес(4)	КГ	2240	2350	2480	2510	3160	3440	3490	4580	5050	5100	5220	5940	6100	6690	7800	9350	9550	10270

⁽¹⁾ Холодная вода 12/7°С, температура конденсации 50°С.

⁽²⁾ Уровень звукового давления измерен в условиях свободного пространства на расстоянии 1 м от блока в соответствии с ISO 3744.

^(*) Сторона С: сторона эл. щита (N.B.) Вес версий SSL указан в технической документации.

ВОДООХЛАЖДАЕМЫЕ ЧИЛЛЕРЫ GVMW 260-V/X÷2470-V/X

Описание

Водоохлаждаемые чиллеры серии GVMW 260-V/X÷2470-V/X предназначены для охлаждения воды или гликолевых растворов в промышленных системах кондиционирования или индустриальных системах охлаждения. Чиллеры GVMW 260-V/X÷2470-V/X применяются в сочетании с фанкойлами или с секциями водяного охлаждения приточных установок и используются совместно с

градирней или драйкулером. Агрегаты GVMW 260-V/X÷2470-V/X оснащаются винтовыми компрессорами и кожухотрубными теплообменниками, имеют компактные размеры и предназначены для установки внутри помещений. Производятся в стандартном и сверхнизкошумном исполнении, могут оснащаться интерфейсной платой RS485 для интеграции в систему диспетчеризации.

Конструкция

- Несущая рама-основание, окрашенная полиэфирной порошковой краской.
- Микропроцессорная система контроля и регулирования.
- Винтовые компрессоры со встроенным маслоотделителем, фильтром на всасывании, нагревателем картера, смотровым стеклом, тепловой защитой, запорными вентилями на нагнетании и плавным управлением производительностью компрессора.
- Электронный термостатический клапан.

- Конденсатор кожухотрубный с легкосъемными чугунными головками для удобства технического обслуживания и ремонта. Каждый холодильный контур имеет независимый конденсатор.
- Испаритель кожухотрубный, с двумя независимыми холодильными контурами и одним водяным контуром.
- Хладагент R134A.
- Электрический шкаф имеет главный выключатель с устройством блокировки двери, плавкие предохранители, защиту от перегрузки компрессоров.

Дополнительные опции

IM - Автоматы защиты

RZ - Компрессоры с бесступенчатым управлением производительности

ВТ - Низкотемпературный комплект

HR - Пароохладитель

HRT - Последовательная полная рекуперация тепла

RF - Фреоновые контуры с запорными вентилями

FE - Нагреватель испарителя

SS - Плавный запуск

DP - Устройство для работы теплового насоса

WM - Система Веб мониторинга

СР - Сухие контакты

Дополнительные аксессуары:

MN - Манометры высокого и низкого давлений

CR - Дистанционный автоматический пульт управления

IS - Интерфейсная плата RS485

PV3 - 3-х ходовой клапан

AG - Резиновые виброопоры

АМ - Пружинные виброопоры

FL - Реле протока

Габаритные размеры

			260	320	375	425	490	580	660	750	890	1050	1160	1290	1440	1610	1790	1980	220	2470
Длина	STD	ММ	3550	3550	3300	3300	3300	3500	3500	3600	3600	3600	4800	4800	5200	5200	5200	5200	5500	5500
Высота	STD	ММ	800	800	1400	1400	1400	1450	1450	1650	1650	1650	1800	1800	1800	1800	2200	2200	2200	2200
Ширина	STD	ММ	2000	2000	2150	2150	2150	2150	2150	2150	2150	2150	2150	2150	2150	2150	2150	2150	2150	2150

КОМПРЕССОРНО-КОНДЕНСАТОРНЫЕ БЛОКИ (ККБ)

R ХЛАДАГЕНТ: R-410A

Описание

Компрессорно-конденсаторные GVSA 10÷105CN1 предназначены для работы в составе бытовых и коммерческих систем центрального кондиционирования или индустриальных систем серии GVSA 10÷105CN1 охлаждения. ККБ применяются совместно с внутренними блоками кондиционеров или с секциями охлаждения приточных установок. Агрегаты поставляются как в версии «только холод», так и с тепловым насосом. Диапазон наружных температур от 17 до 46°C. агрегаты Опционально МОГУТ оснащаться низкотемпературным комплектом (регулятор давления конденсации), виброопорами комплектом подключения.

Конструкция

Компрессорно-конденсаторные блоки серии GVSA роторными 10÷105CN1 оснащаются спиральными компрессорами осевыми вентиляторами. Агрегаты GVSA 10÷105CN1 имеют низкий уровень шума и предназначены для уличного использования. Корпус агрегатов изготовлен из оцинкованного стального листа и окрашен порошковой краской устойчивой к воздействию атмосферных осадков. Модели 10÷45 имеют один холодильный контур, модели 53÷105 -Комплекты двухконтурные. подключения поставляются опционально. Состав комплекта подключения: ТРВ, соленоид, фильтр-осушитель и смотровое стекло.

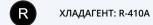
Низкотемпературный комплект

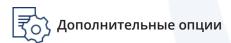
Резиновые виброопоры

Комплект подключения

Модель			GVSA-10CC	GVSA-14CC	GVSA-16CC	GVSA-22CC	GVSA-28CC	GVSA-35CC
Охлаждение	Мощность	кВт	10,5	14	16	22	28	35
	Потребление	кВт	4	5,2	6,2	7,6	9,6	12,6
	Ток	А	6,8	8,8	10,5	12,8	16,2	21,3
Электропитание		\		3ф ~ 380-400 B, 50 Гц				
Максимальное потребление		кВт	5,3	6,1	8,5	11,7	14,4	17,3
Максимальный ток		А	10	12	13	19,3	23,7	28,5
Уровень шума		дБ (А)	56	56	57	65	67	69
Компрессор	Тип / Кол-во	1	Спиральный / 1	Спиральный / 1	Спиральный / 1	Спиральный / 1	Спиральный / 1	Спиральный / 1
	Потребление	Вт	3,650	4,750	5,750	6,950	9,200	10,862
	Номинальный ток (RLA)	Α	6,58	8,22	9,77	16,5	20	21,4
Вентилятор	Тип / Кол-во	١	Осевой / 1	Осевой / 2	Осевой / 2	Осевой / 2	Осевой / 2	Осевой / 2
	Диаметр вентилятора	ММ	560	455	455	530	530	530
Теплообменник	Тип	١						
	Диаметр труб	ММ	7	7	7,94	7,94	7	7
Подключения	Кол-во контуров	ШТ	1	1	1	1	1	1
	Жидкостная / Газовая	ММ	9,52/19	9,52/19	9,52/19	9,52/22	9,52/25	12,7/28,6
	Макс. длинна трассы	М	30	30	30	50	50	50
	Макс. перепад высот	М	20	20	20	30	30	30
Размеры (Д×В×Ш)		ММ	1,077×967×396	987×1,167×400	987×1,167×400	1,260×908×700	1,260×908×700	1,260×908×700
Упаковка (Д×В×Ш)		MM	1,120×1,100×435	1,032×1,307×443	1,032×1,307×443	1,320×1,060×730	1,320×1,060×730	1,320×1,060×730
Транспортный / Рабочий вес		КГ	85,8 / 95,6	91,6 / 102	96,6 / 107	171 / 190	185 / 202	199 / 215


Модель			GVSA-45CC	GVSA-53CC	GVSA-61CC	GVSA-70CC	GVSA-105CC	
	Мощность	кВт	45	53	61	70	105	
Охлаждение	Потребление	кВт	17,6	16,8	19	22	28	
	Ток	А	31,5	30	34	39,3	50	
Электропитание		١	3ф ~ 380-415 B, 50 Гц	3ф ~ 380-400 В, 50 Гц				
Максимальное потребление		кВт	26,9	23,7	28,2	31,8	40,7	
Максимальный ток		А	47,9	45,2	51	56,5	71,8	
Уровень шума		дБ (А)	70	73	76	76	78	
Компрессор	Тип / Кол-во	\	Спиральный / 3	Спиральный / 2	Спиральный / 2	Спиральный / 2	Спиральный / 2	
	Потребление	Вт	5,130	8,472	9,462	10,862	13,732	
	Номинальный ток (RLA)	А	8,8	16,4	20,7	21,4	27,6	
Вентилятор	Тип / Кол-во	\	Осевой / 2	Осевой / 2	Осевой / 2	Осевой / 2	Осевой / 2	
	Диаметр вентилятора	ММ	560/562	650	700	750	802	
Теплообменник	Тип	\	Медно-алюминиевый					
	Диаметр труб	ММ	7,94	7,94	7,94	7,94	7	
Подключения	Кол-во контуров	ШТ	1	2	2	2	2	
	Жидкостная / Газовая	ММ	16/32	(12,7/25) × 2	(12,7/25) × 2	(12,7/25) × 2	(12,7/25) × 2	
	Макс. длинна трассы	М	50	50	50	50	50	
	Макс. перепад высот	М	30	30	30	30	30	
Размеры (Д×В×Ш)			1,250×1,615×765	1,825×1,245×899	1,825×1,245×899	2,158×1,258×1,082	2,158×1,669×1,082	
Упаковка (Д×В×Ш)			1,305×1,790×820	1,844×1,272×924	1,844×1,272×924	2,168×1,275×1,105	2,168×1,686×1,105	
Транспортный / Рабочий вес			288 / 308	395 / 405	395 / 405	508 / 523	570 / 582	


КРЫШНЫЕ КОНДИЦИОНЕРЫ (РУФТОПЫ)



Описание

Руфтопы или крышные кондиционеры GVAR представляют собой автономное устройство для кондиционирования и воздушного отопления помещений. Руфтопы предназначены для монтажа на крышах зданий. В состав крышных кондиционеров по определению входит вентиляционная установка и холодильный агрегат (ККБ). Крышные кондиционеры GVAR могут комплектоваться электрическим или водяным нагревателями воздуха, клапаном подмеса свежего воздуха, а также работать в режиме реверсивного теплового насоса.

ОО Конструкция

Руфтопы GVAR оснащаются спиральными компрессорами, осевыми вентиляторами охлаждения конденсатора и центробежными вентиляторами вентиляционной секции. Корпус агрегатов представляет собой каркасно-панельную конструкцию. Панели изготовлены из оцинкованного стального листа и окрашены порошковой краской устойчивой к воздействию атмосферных осадков. Агрегаты также могут оснащаться внутренним распределительным устройством для работы в помещениях с высотой потолков до 20м.

Электрокалорифер

Клапан подмеса свежего воздуха

Жидкостной нагреватель

Распределительное устройство

Аксессуары

Контроллер для агрегатов Heat-pump

Контроллер для агрегатов с доп нагревом

Контроллер Honeywell

Коммутационная плата RS-485

62

ВЫНОСНЫЕ КОНДЕНСАТОРЫ

S-POWFR

Конденсаторы плоской формы

Описание

Конденсаторы воздушного охлаждения GENERAL VENT предназначены для отвода тепла в системах промышленного кондиционирования индустриальных системах охлаждения. Агрегаты применяются совместно с бесконденсаторными компрессорными станциями прецизионными кондиционерами. Конденсаторы серии S-POWER представляют собой агрегаты плоской формы производительностью от 8 до 2000 кВт. V-POWER – это серия высокоэффективных V-образной конденсаторов производительностью от 100 до 2000 кВт, которая на применяется объектах высокой холодопроизводительностью сокращения занимаемых площадей.

V-POWER

Конденсаторы V-образной формы

Конструкция

Выносные конденсаторы GENERAL VENT оснащаются осевыми вентиляторами диаметром 500, 630, 800, 900 мм и медно-алюминиевыми теплообменниками. Корпус агрегатов изготовлен из оцинкованной стали и окрашен полиэфирной порошковой краской устойчивой к воздействию атмосферных осадков. Опционально корпус может изготавливаться из нержавеющей стали. Конденсаторы серии S-POWER производятся как в горизонтальном, так и в вертикальном исполнении. Агрегаты обеих серий изготавливаются в стандартном, низкошумном, взрывозащищенном исполнениях МОГУТ поставляются в комплекте с автоматикой или без нее. Применяемый хладагент: R410A, R134A, R407C, R404A, R507A, R22 и др.

Дополнительные опции и аксессуары

Резиновые виброопоры

Пружинные виброопоры

Частотный регулятор

Фланцевое соединение PN10

Сервисный выключатель

Опции по регулированию производительности агрегатов:

- Электронный блок регулирования скорости вращения вентиляторов за счет изменения напряжения тока питания:
- Электронный блок регулирования скорости вращения вентиляторов за счет изменения частоты тока питания;
- Аналоговый электронный блок регулирования скорости вращения вентиляторов за счет отсечки фаз тока питания:
- Цифровой электронный блок регулирования скорости вращения вентиляторов за счет отсечки фаз тока питания.

ДРАЙКУЛЕРЫ (СУХИЕ ГРАДИРНИ)

S-POWFR

Драйкулеры плоской формы

V-POWER и SUPER V-POWER

Драйкулеры V-образной формы

Описание

Сухие охладители или драйкулеры GENERAL VENT предназначены для отвода тепла в системах промышленного кондиционирования индустриальных системах охлаждения. Агрегаты применяются совместно с водоохлаждаемыми чиллерами, прецизионными кондиционерами и технологическим оборудованием. Драйкулеры серии S-POWER представляют собой агрегаты плоской формы производительностью от 5 до 1100 кВт. V-POWER и SUPER V-POWER – это серия высокоэффективных драйкулеров V-образной формы производительностью от 100 до 2200 кВт, которая применяется на объектах высокой холодопроизводительностью сокращения занимаемых площадей.

00

Конструкция

Сухие охладители GENERAL VENT оснащаются осевыми вентиляторами диаметром 500, 630, 800, 900 мм и медно-алюминиевыми теплообменниками. Корпус агрегатов изготовлен из оцинкованной стали и окрашен полиэфирной порошковой краской устойчивой к воздействию атмосферных осадков. Опционально корпус может изготавливаться из нержавеющей стали. Драйкулеры серии S-POWER производятся как в горизонтальном, так и в вертикальном исполнении. Агрегаты обеих серий изготавливаются в стандартном, низкошумном, супернизкошумном, взрывозащищенном исполнениях и могут поставляются в комплекте с автоматикой или без нее.

Дополнительные опции и аксессуары

Резиновые виброопоры

Пружинные виброопоры

Частотный регулятор

Фланцевое соединение PN10

Сервисный выключатель

Опции по регулированию производительности агрегатов:

- Электронный блок регулирования скорости вращения вентиляторов за счет изменения напряжения тока питания:
- Электронный блок регулирования скорости вращения вентиляторов за счет изменения частоты тока питания;
- Аналоговый электронный блок регулирования скорости вращения вентиляторов за счет отсечки фаз тока питания;
- Цифровой электронный блок регулирования скорости вращения вентиляторов за счет отсечки фаз тока питания.

ГРАДИРНИ ОТКРЫТОГО ТИПА

GOCT

Описание

Открытые градирни GENERAL VENT серии GOCT предназначены для охлаждения воды в системах оборотного водоснабжения и промышленного кондиционирования. Максимальная температура охлаждаемой жидкости на входе в агрегат 35-40°С. Агрегаты производятся в 2-х исполнениях по уровню шума. В агрегатах реализовано влажное охлаждение на поверхности теплопередачи. Опционально возможно инверторное управление двигателями вентиляторов. В целях безопасности агрегаты оснащаются датчиками вибрации.

GOCT(F)

00

Конструкция

Открытые градирни GOCT оснащаются осевыми вентиляторами со стеклопластиковыми лопастями, системой орошения с форсунками из стеклопластика, поверхностью теплопередачи из полипропилена и каплеуловителем. Панели корпуса градирен, выполнены стеклопластика ИЗ (полиэстер, армированный стекловолокном), который нуждается в покраске, является устойчивым к ультрафиолету и долговечным эксплуатации. В градирнях серии GOCT вентиляторы могут оснащаться электродвигателями с прямым или редукторным приводом.

Дополнительные опции и аксессуары

Резиновые виброопоры

Пружинные виброопоры

Частотный регулятор

Фланцевое соединение PN10

Сервисный выключатель

Опции по исполнению агрегатов:

- Материал корпуса винилэфирная смола;
- Поверхность теплопередачи типа «Бигуди» для работы с водой повышенной жесткости, средней степени загрязненности, с высокой концентрацией твердых частиц, а также в загрязненной и пыльной среде;
- Поверхность теплопередачи «Брызгального» типа для работы в загрязненной и пыльной среде, с концентрацией взвесей в воде более 100ррм, а также с водой температурой до 90°С, водой большой жесткости и содержанием оксидов металла;
- Система орошения из стеклопластика для работы в условиях холодного климата;
- Система орошения лоткового типа для работы в условиях с высокой степенью загрязнения и повышенным содержанием примесей металлов (металлургия и масложировая промышленность).

ГРАДИРНИ ЗАКРЫТОГО ТИПА

GCCT Градирни закрытого типа

Описание

Закрытые градирни GENERAL VENT серии GCCT предназначены для охлаждения воды в системах оборотного водоснабжения и промышленного кондиционирования. Максимальная температура охлаждаемой жидкости на входе в агрегат 60°C. Испарительные конденсаторы GENERAL VENT серии GAEC/D предназначены конденсации для хладагентов в промышленных системах охлаждения и кондиционирования. Агрегаты производятся в 2-х исполнениях по уровню шума. В агрегатах реализовано комбинированное влажно-сухое охлаждение в теплообменнике и на поверхности теплопередачи. Опционально возможно инверторное управление двигателями вентиляторов.

GAEC Испарительные конденсаторы

Конструкция

Закрытые градирни и испарительные конденсаторы GENERAL VENT оснащаются осевыми вентиляторами непосредственного привода, гладкотрубными теплообменниками ИЗ оцинкованной поверхностью теплопередачи и каплеуловителем из ПВХ. Рабочие колеса вентиляторов выполнены из углепластикового композитного материала. Корпус агрегатов изготовлен из оцинкованной, либо нержавеющей стали. Благодаря этому устройства устойчивы к воздействию охлаждаемой жидкости и атмосферных осадков. Применяемый хладагент испарительных конденсаторов R22, R407C, R717, R134A.

3

Дополнительные опции и аксессуары

Резиновые виброопоры

Пружинные виброопоры

Частотный регулятор

Фланцевое соединение PN10

Сервисный выключатель

Опции по исполнению агрегатов:

- Корпус + теплообменник из нержавеющей стали 304;
- Корпус + теплообменник из нержавеющей стали 316;
- Поверхность теплопередачи из ХПВХ;
- Поверхность теплопередачи из НПВХ.

